Temporal and spatial characterization of cellular constituents during neointimal hyperplasia after vascular injury: Potential contribution of bone-marrow-derived progenitors to arterial remodeling

Exuberant smooth muscle cells (SMCs) hyperplasia is the major cause of postangioplasty restenosis. We suggested that circulating smooth muscle progenitor cells might contribute to lesion formation after vascular injury. We extensively investigated the cellular constituents during neointimal formatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cardiovascular pathology 2004-11, Vol.13 (6), p.306-312
Hauptverfasser: Shoji, Makoto, Sata, Masataka, Fukuda, Daiju, Tanaka, Kimie, Sato, Takatoshi, Iso, Yoshitaka, Shibata, Masayuki, Suzuki, Hiroshi, Koba, Shinji, Geshi, Eiichi, Katagiri, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 312
container_issue 6
container_start_page 306
container_title Cardiovascular pathology
container_volume 13
creator Shoji, Makoto
Sata, Masataka
Fukuda, Daiju
Tanaka, Kimie
Sato, Takatoshi
Iso, Yoshitaka
Shibata, Masayuki
Suzuki, Hiroshi
Koba, Shinji
Geshi, Eiichi
Katagiri, Takashi
description Exuberant smooth muscle cells (SMCs) hyperplasia is the major cause of postangioplasty restenosis. We suggested that circulating smooth muscle progenitor cells might contribute to lesion formation after vascular injury. We extensively investigated the cellular constituents during neointimal formation after mechanical vascular injury. A large wire was inserted into the mouse femoral artery, causing complete endothelial denudation and marked enlargement of the lumen with massive apoptosis of medial SMCs. At 2 h, the injured artery remained dilated with a thin media containing very few cells. A scanning electron microscopy showed fibrin and platelet deposition at the luminal side. One week after the injury, CD45-positive hematopoietic cells accumulated at the luminal side. Those CD45-positive cells gradually disappeared, whereas neointimal hyperplasia was formed with α-smooth muscle actin (SMA) positive cells. Bone marrow cells and peripheral mononuclear cells differentiated into α-SMA-positive cells in the presence of PDGF and basic FGF. Moreover, in bone marrow chimeric mice, bone-marrow-derived cells substantially contributed to neointimal hyperplasia after wire injury. These results suggest that early accumulation of hematopoietic cells may play a role in the pathogenesis of SMC hyperplasia under certain circumstances.
doi_str_mv 10.1016/j.carpath.2004.08.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67089270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1054880704006994</els_id><sourcerecordid>67089270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-2357de61859323ff25f17c52d1115e721dea64e8acd5fdb60a36d6d485b67b903</originalsourceid><addsrcrecordid>eNqFUcmO1DAQjRCIWeATQD5xS7CTeGkuCI1gQBoJDsPZcuzKtFuJHcpOo-b7-DDc0404cqpS6S1V9arqFaMNo0y83TXW4GLytmkp7RuqmlKeVJdMyU3Nuk48LT3lfa0UlRfVVUo7Sqnq-_55dcE450JKcVn9vod5iWgmYoIjqQj60tutQWMzoP9VBjGQOBIL07ROBomNIWWfVwg5EbeiDw8kQPQh-7lwt4cFcJlM8oaYsWiQvUn2kenDbsXDO_It5kJ-NIohox_WvyZDDFDPBjH-rF2x34MjC8YHCD5HTCRHYvC4V-EizNHBVOxfVM9GMyV4ea7X1fdPH-9vPtd3X2-_3Hy4q23fyly3HZcOBFN807XdOLZ8ZNLy1jHGOMiWOTCiB2Ws46MbBDWdcML1ig9CDhvaXVdvTrplpR8rpKxnn45_MeX-NWkhqdq08gjkJ6DFmBLCqBcsz8GDZlQf49M7fY5PH-PTVOlSCu_12WAdZnD_WOe8CuD9CQDlzL0H1Ml6CBacR7BZu-j_Y_EHO2u2Kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67089270</pqid></control><display><type>article</type><title>Temporal and spatial characterization of cellular constituents during neointimal hyperplasia after vascular injury: Potential contribution of bone-marrow-derived progenitors to arterial remodeling</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Shoji, Makoto ; Sata, Masataka ; Fukuda, Daiju ; Tanaka, Kimie ; Sato, Takatoshi ; Iso, Yoshitaka ; Shibata, Masayuki ; Suzuki, Hiroshi ; Koba, Shinji ; Geshi, Eiichi ; Katagiri, Takashi</creator><creatorcontrib>Shoji, Makoto ; Sata, Masataka ; Fukuda, Daiju ; Tanaka, Kimie ; Sato, Takatoshi ; Iso, Yoshitaka ; Shibata, Masayuki ; Suzuki, Hiroshi ; Koba, Shinji ; Geshi, Eiichi ; Katagiri, Takashi</creatorcontrib><description>Exuberant smooth muscle cells (SMCs) hyperplasia is the major cause of postangioplasty restenosis. We suggested that circulating smooth muscle progenitor cells might contribute to lesion formation after vascular injury. We extensively investigated the cellular constituents during neointimal formation after mechanical vascular injury. A large wire was inserted into the mouse femoral artery, causing complete endothelial denudation and marked enlargement of the lumen with massive apoptosis of medial SMCs. At 2 h, the injured artery remained dilated with a thin media containing very few cells. A scanning electron microscopy showed fibrin and platelet deposition at the luminal side. One week after the injury, CD45-positive hematopoietic cells accumulated at the luminal side. Those CD45-positive cells gradually disappeared, whereas neointimal hyperplasia was formed with α-smooth muscle actin (SMA) positive cells. Bone marrow cells and peripheral mononuclear cells differentiated into α-SMA-positive cells in the presence of PDGF and basic FGF. Moreover, in bone marrow chimeric mice, bone-marrow-derived cells substantially contributed to neointimal hyperplasia after wire injury. These results suggest that early accumulation of hematopoietic cells may play a role in the pathogenesis of SMC hyperplasia under certain circumstances.</description><identifier>ISSN: 1054-8807</identifier><identifier>EISSN: 1879-1336</identifier><identifier>DOI: 10.1016/j.carpath.2004.08.004</identifier><identifier>PMID: 15556776</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actins - genetics ; Actins - metabolism ; Animals ; Bone Marrow Cells - cytology ; Bone Marrow Cells - metabolism ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Disease Models, Animal ; Femoral Artery - injuries ; Femoral Artery - metabolism ; Femoral Artery - ultrastructure ; Hematopoietic Stem Cells - metabolism ; Hematopoietic Stem Cells - pathology ; Hyperplasia ; Immunohistochemistry ; Injury ; Leukocyte Common Antigens - metabolism ; Leukocytes, Mononuclear - cytology ; Leukocytes, Mononuclear - metabolism ; Male ; Mice ; Mice, Inbred C3H ; Microscopy, Electron, Scanning ; Muscle, Smooth, Vascular - metabolism ; Muscle, Smooth, Vascular - pathology ; Muscle, Smooth, Vascular - physiopathology ; Myocytes, Smooth Muscle - metabolism ; Myocytes, Smooth Muscle - ultrastructure ; Neointima ; Progenitor ; Proliferation ; RNA, Messenger - metabolism ; Smooth muscle cell ; Tunica Intima - metabolism ; Tunica Intima - pathology ; Tunica Intima - physiopathology</subject><ispartof>Cardiovascular pathology, 2004-11, Vol.13 (6), p.306-312</ispartof><rights>2004 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-2357de61859323ff25f17c52d1115e721dea64e8acd5fdb60a36d6d485b67b903</citedby><cites>FETCH-LOGICAL-c427t-2357de61859323ff25f17c52d1115e721dea64e8acd5fdb60a36d6d485b67b903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carpath.2004.08.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15556776$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shoji, Makoto</creatorcontrib><creatorcontrib>Sata, Masataka</creatorcontrib><creatorcontrib>Fukuda, Daiju</creatorcontrib><creatorcontrib>Tanaka, Kimie</creatorcontrib><creatorcontrib>Sato, Takatoshi</creatorcontrib><creatorcontrib>Iso, Yoshitaka</creatorcontrib><creatorcontrib>Shibata, Masayuki</creatorcontrib><creatorcontrib>Suzuki, Hiroshi</creatorcontrib><creatorcontrib>Koba, Shinji</creatorcontrib><creatorcontrib>Geshi, Eiichi</creatorcontrib><creatorcontrib>Katagiri, Takashi</creatorcontrib><title>Temporal and spatial characterization of cellular constituents during neointimal hyperplasia after vascular injury: Potential contribution of bone-marrow-derived progenitors to arterial remodeling</title><title>Cardiovascular pathology</title><addtitle>Cardiovasc Pathol</addtitle><description>Exuberant smooth muscle cells (SMCs) hyperplasia is the major cause of postangioplasty restenosis. We suggested that circulating smooth muscle progenitor cells might contribute to lesion formation after vascular injury. We extensively investigated the cellular constituents during neointimal formation after mechanical vascular injury. A large wire was inserted into the mouse femoral artery, causing complete endothelial denudation and marked enlargement of the lumen with massive apoptosis of medial SMCs. At 2 h, the injured artery remained dilated with a thin media containing very few cells. A scanning electron microscopy showed fibrin and platelet deposition at the luminal side. One week after the injury, CD45-positive hematopoietic cells accumulated at the luminal side. Those CD45-positive cells gradually disappeared, whereas neointimal hyperplasia was formed with α-smooth muscle actin (SMA) positive cells. Bone marrow cells and peripheral mononuclear cells differentiated into α-SMA-positive cells in the presence of PDGF and basic FGF. Moreover, in bone marrow chimeric mice, bone-marrow-derived cells substantially contributed to neointimal hyperplasia after wire injury. These results suggest that early accumulation of hematopoietic cells may play a role in the pathogenesis of SMC hyperplasia under certain circumstances.</description><subject>Actins - genetics</subject><subject>Actins - metabolism</subject><subject>Animals</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Disease Models, Animal</subject><subject>Femoral Artery - injuries</subject><subject>Femoral Artery - metabolism</subject><subject>Femoral Artery - ultrastructure</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Hematopoietic Stem Cells - pathology</subject><subject>Hyperplasia</subject><subject>Immunohistochemistry</subject><subject>Injury</subject><subject>Leukocyte Common Antigens - metabolism</subject><subject>Leukocytes, Mononuclear - cytology</subject><subject>Leukocytes, Mononuclear - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C3H</subject><subject>Microscopy, Electron, Scanning</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Muscle, Smooth, Vascular - pathology</subject><subject>Muscle, Smooth, Vascular - physiopathology</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>Myocytes, Smooth Muscle - ultrastructure</subject><subject>Neointima</subject><subject>Progenitor</subject><subject>Proliferation</subject><subject>RNA, Messenger - metabolism</subject><subject>Smooth muscle cell</subject><subject>Tunica Intima - metabolism</subject><subject>Tunica Intima - pathology</subject><subject>Tunica Intima - physiopathology</subject><issn>1054-8807</issn><issn>1879-1336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUcmO1DAQjRCIWeATQD5xS7CTeGkuCI1gQBoJDsPZcuzKtFuJHcpOo-b7-DDc0404cqpS6S1V9arqFaMNo0y83TXW4GLytmkp7RuqmlKeVJdMyU3Nuk48LT3lfa0UlRfVVUo7Sqnq-_55dcE450JKcVn9vod5iWgmYoIjqQj60tutQWMzoP9VBjGQOBIL07ROBomNIWWfVwg5EbeiDw8kQPQh-7lwt4cFcJlM8oaYsWiQvUn2kenDbsXDO_It5kJ-NIohox_WvyZDDFDPBjH-rF2x34MjC8YHCD5HTCRHYvC4V-EizNHBVOxfVM9GMyV4ea7X1fdPH-9vPtd3X2-_3Hy4q23fyly3HZcOBFN807XdOLZ8ZNLy1jHGOMiWOTCiB2Ws46MbBDWdcML1ig9CDhvaXVdvTrplpR8rpKxnn45_MeX-NWkhqdq08gjkJ6DFmBLCqBcsz8GDZlQf49M7fY5PH-PTVOlSCu_12WAdZnD_WOe8CuD9CQDlzL0H1Ml6CBacR7BZu-j_Y_EHO2u2Kw</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Shoji, Makoto</creator><creator>Sata, Masataka</creator><creator>Fukuda, Daiju</creator><creator>Tanaka, Kimie</creator><creator>Sato, Takatoshi</creator><creator>Iso, Yoshitaka</creator><creator>Shibata, Masayuki</creator><creator>Suzuki, Hiroshi</creator><creator>Koba, Shinji</creator><creator>Geshi, Eiichi</creator><creator>Katagiri, Takashi</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20041101</creationdate><title>Temporal and spatial characterization of cellular constituents during neointimal hyperplasia after vascular injury: Potential contribution of bone-marrow-derived progenitors to arterial remodeling</title><author>Shoji, Makoto ; Sata, Masataka ; Fukuda, Daiju ; Tanaka, Kimie ; Sato, Takatoshi ; Iso, Yoshitaka ; Shibata, Masayuki ; Suzuki, Hiroshi ; Koba, Shinji ; Geshi, Eiichi ; Katagiri, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-2357de61859323ff25f17c52d1115e721dea64e8acd5fdb60a36d6d485b67b903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Actins - genetics</topic><topic>Actins - metabolism</topic><topic>Animals</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Disease Models, Animal</topic><topic>Femoral Artery - injuries</topic><topic>Femoral Artery - metabolism</topic><topic>Femoral Artery - ultrastructure</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Hematopoietic Stem Cells - pathology</topic><topic>Hyperplasia</topic><topic>Immunohistochemistry</topic><topic>Injury</topic><topic>Leukocyte Common Antigens - metabolism</topic><topic>Leukocytes, Mononuclear - cytology</topic><topic>Leukocytes, Mononuclear - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C3H</topic><topic>Microscopy, Electron, Scanning</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Muscle, Smooth, Vascular - pathology</topic><topic>Muscle, Smooth, Vascular - physiopathology</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>Myocytes, Smooth Muscle - ultrastructure</topic><topic>Neointima</topic><topic>Progenitor</topic><topic>Proliferation</topic><topic>RNA, Messenger - metabolism</topic><topic>Smooth muscle cell</topic><topic>Tunica Intima - metabolism</topic><topic>Tunica Intima - pathology</topic><topic>Tunica Intima - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shoji, Makoto</creatorcontrib><creatorcontrib>Sata, Masataka</creatorcontrib><creatorcontrib>Fukuda, Daiju</creatorcontrib><creatorcontrib>Tanaka, Kimie</creatorcontrib><creatorcontrib>Sato, Takatoshi</creatorcontrib><creatorcontrib>Iso, Yoshitaka</creatorcontrib><creatorcontrib>Shibata, Masayuki</creatorcontrib><creatorcontrib>Suzuki, Hiroshi</creatorcontrib><creatorcontrib>Koba, Shinji</creatorcontrib><creatorcontrib>Geshi, Eiichi</creatorcontrib><creatorcontrib>Katagiri, Takashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cardiovascular pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shoji, Makoto</au><au>Sata, Masataka</au><au>Fukuda, Daiju</au><au>Tanaka, Kimie</au><au>Sato, Takatoshi</au><au>Iso, Yoshitaka</au><au>Shibata, Masayuki</au><au>Suzuki, Hiroshi</au><au>Koba, Shinji</au><au>Geshi, Eiichi</au><au>Katagiri, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal and spatial characterization of cellular constituents during neointimal hyperplasia after vascular injury: Potential contribution of bone-marrow-derived progenitors to arterial remodeling</atitle><jtitle>Cardiovascular pathology</jtitle><addtitle>Cardiovasc Pathol</addtitle><date>2004-11-01</date><risdate>2004</risdate><volume>13</volume><issue>6</issue><spage>306</spage><epage>312</epage><pages>306-312</pages><issn>1054-8807</issn><eissn>1879-1336</eissn><abstract>Exuberant smooth muscle cells (SMCs) hyperplasia is the major cause of postangioplasty restenosis. We suggested that circulating smooth muscle progenitor cells might contribute to lesion formation after vascular injury. We extensively investigated the cellular constituents during neointimal formation after mechanical vascular injury. A large wire was inserted into the mouse femoral artery, causing complete endothelial denudation and marked enlargement of the lumen with massive apoptosis of medial SMCs. At 2 h, the injured artery remained dilated with a thin media containing very few cells. A scanning electron microscopy showed fibrin and platelet deposition at the luminal side. One week after the injury, CD45-positive hematopoietic cells accumulated at the luminal side. Those CD45-positive cells gradually disappeared, whereas neointimal hyperplasia was formed with α-smooth muscle actin (SMA) positive cells. Bone marrow cells and peripheral mononuclear cells differentiated into α-SMA-positive cells in the presence of PDGF and basic FGF. Moreover, in bone marrow chimeric mice, bone-marrow-derived cells substantially contributed to neointimal hyperplasia after wire injury. These results suggest that early accumulation of hematopoietic cells may play a role in the pathogenesis of SMC hyperplasia under certain circumstances.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15556776</pmid><doi>10.1016/j.carpath.2004.08.004</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-8807
ispartof Cardiovascular pathology, 2004-11, Vol.13 (6), p.306-312
issn 1054-8807
1879-1336
language eng
recordid cdi_proquest_miscellaneous_67089270
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Actins - genetics
Actins - metabolism
Animals
Bone Marrow Cells - cytology
Bone Marrow Cells - metabolism
Cell Differentiation
Cell Proliferation
Cells, Cultured
Disease Models, Animal
Femoral Artery - injuries
Femoral Artery - metabolism
Femoral Artery - ultrastructure
Hematopoietic Stem Cells - metabolism
Hematopoietic Stem Cells - pathology
Hyperplasia
Immunohistochemistry
Injury
Leukocyte Common Antigens - metabolism
Leukocytes, Mononuclear - cytology
Leukocytes, Mononuclear - metabolism
Male
Mice
Mice, Inbred C3H
Microscopy, Electron, Scanning
Muscle, Smooth, Vascular - metabolism
Muscle, Smooth, Vascular - pathology
Muscle, Smooth, Vascular - physiopathology
Myocytes, Smooth Muscle - metabolism
Myocytes, Smooth Muscle - ultrastructure
Neointima
Progenitor
Proliferation
RNA, Messenger - metabolism
Smooth muscle cell
Tunica Intima - metabolism
Tunica Intima - pathology
Tunica Intima - physiopathology
title Temporal and spatial characterization of cellular constituents during neointimal hyperplasia after vascular injury: Potential contribution of bone-marrow-derived progenitors to arterial remodeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A14%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20and%20spatial%20characterization%20of%20cellular%20constituents%20during%20neointimal%20hyperplasia%20after%20vascular%20injury:%20Potential%20contribution%20of%20bone-marrow-derived%20progenitors%20to%20arterial%20remodeling&rft.jtitle=Cardiovascular%20pathology&rft.au=Shoji,%20Makoto&rft.date=2004-11-01&rft.volume=13&rft.issue=6&rft.spage=306&rft.epage=312&rft.pages=306-312&rft.issn=1054-8807&rft.eissn=1879-1336&rft_id=info:doi/10.1016/j.carpath.2004.08.004&rft_dat=%3Cproquest_cross%3E67089270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67089270&rft_id=info:pmid/15556776&rft_els_id=S1054880704006994&rfr_iscdi=true