Potential mechanisms of low-temperature tolerance of C4 photosynthesis in Miscanthus x giganteus: an in vivo analysis

Miscanthus x giganteus (Greef & Deuter ex Hodkinson & Renvoize) is unique among C4 species in its remarkable ability to maintain high photosynthetic productivity at low temperature, by contrast to the related C4 NADP-malic enzyme-type species Zea mays L. In order to determine the in vivo phy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2004-11, Vol.220 (1), p.145-155
Hauptverfasser: Naidu, S.L, Long, S.P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue 1
container_start_page 145
container_title Planta
container_volume 220
creator Naidu, S.L
Long, S.P
description Miscanthus x giganteus (Greef & Deuter ex Hodkinson & Renvoize) is unique among C4 species in its remarkable ability to maintain high photosynthetic productivity at low temperature, by contrast to the related C4 NADP-malic enzyme-type species Zea mays L. In order to determine the in vivo physiological basis of this difference in photosynthesis, water vapor and CO2 exchange and modulated chlorophyll fluorescence were simultaneously monitored on attached leaf segments from plants grown and measured at 25/20 degrees C or 14/11 degrees C (day/night temperature). Analysis of the response of photosynthesis to internal CO2 concentration suggested that ribulose bisphosphate carboxylase/oxygenase (Rubisco) and/or pyruvate orthophosphate dikinase (PPDK) play a more important role in determining the response to low temperature than does phosphoenolpyruvate carboxylase (PEPc). For both species at both temperatures, the linear relationship between operating efficiency of whole-chain electron transport through photosystem II (phi(PSII)) and the efficiency of CO2 assimilation (phi(CO2)) was unchanged and had a zero intercept, suggesting the absence of non-photosynthetic electron sinks. The major limitation at low temperature could not be solely at Rubisco or at any other point in the Calvin cycle, since this would have increased leakage of CO2 to the mesophyll and increased phi(PSII)/phi(CO2). This in vivo analysis suggested that maintenance of high photosynthetic rates in M. x giganteus at low temperature, in contrast to Z. mays, is most likely the result of different properties of Rubisco and/or PPDK, reduced susceptibility to photoinhibition, and the ability to maintain high levels of leaf absorptance during growth at low temperature.
doi_str_mv 10.1007/s00425-004-1322-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_67085952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67085952</sourcerecordid><originalsourceid>FETCH-LOGICAL-f178t-959ab6f0f20328d7e509af63904e8b39c61aa7261e9d3119c8f34b2533bedda43</originalsourceid><addsrcrecordid>eNpFkEFv1DAQhS0EotvCD-ACvsAtMLZjO-ZWraAgFYEEPUeTZLxrlMRL7BT23-NVF3GZeaP3aTRvGHsh4K0AsO8SQC11VWollJSVecQ2olayklA3j9kGoGhwSl-wy5R-AhTT2qfsQmipG6vdhq3fYqY5Bxz5RP0e55CmxKPnY_xdZZoOtGBeF-I5jkXOPZ3Mbc0P-5hjOs55TykkHmb-JaQey7wm_ofvwq5oWtN7jvPJvQ_3sUgcjwV_xp54HBM9P_crdvfxw4_tp-r2683n7fVt5YVtcuW0w8548LIEaQZLGhx6oxzU1HTK9UYgWmkEuUEJ4frGq7qTWqmOhgFrdcXePOw9LPHXSim3UzmSxhFnimtqjYVGOy0L-PIMrt1EQ3tYwoTLsf33qAK8PgNYUo7-9IqQ_nOmVsY1p0WvHjiPscXdUpi77xKEAgFGCmvUX4eiglo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67085952</pqid></control><display><type>article</type><title>Potential mechanisms of low-temperature tolerance of C4 photosynthesis in Miscanthus x giganteus: an in vivo analysis</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Naidu, S.L ; Long, S.P</creator><creatorcontrib>Naidu, S.L ; Long, S.P</creatorcontrib><description>Miscanthus x giganteus (Greef &amp; Deuter ex Hodkinson &amp; Renvoize) is unique among C4 species in its remarkable ability to maintain high photosynthetic productivity at low temperature, by contrast to the related C4 NADP-malic enzyme-type species Zea mays L. In order to determine the in vivo physiological basis of this difference in photosynthesis, water vapor and CO2 exchange and modulated chlorophyll fluorescence were simultaneously monitored on attached leaf segments from plants grown and measured at 25/20 degrees C or 14/11 degrees C (day/night temperature). Analysis of the response of photosynthesis to internal CO2 concentration suggested that ribulose bisphosphate carboxylase/oxygenase (Rubisco) and/or pyruvate orthophosphate dikinase (PPDK) play a more important role in determining the response to low temperature than does phosphoenolpyruvate carboxylase (PEPc). For both species at both temperatures, the linear relationship between operating efficiency of whole-chain electron transport through photosystem II (phi(PSII)) and the efficiency of CO2 assimilation (phi(CO2)) was unchanged and had a zero intercept, suggesting the absence of non-photosynthetic electron sinks. The major limitation at low temperature could not be solely at Rubisco or at any other point in the Calvin cycle, since this would have increased leakage of CO2 to the mesophyll and increased phi(PSII)/phi(CO2). This in vivo analysis suggested that maintenance of high photosynthetic rates in M. x giganteus at low temperature, in contrast to Z. mays, is most likely the result of different properties of Rubisco and/or PPDK, reduced susceptibility to photoinhibition, and the ability to maintain high levels of leaf absorptance during growth at low temperature.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-004-1322-6</identifier><identifier>PMID: 15258759</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Acclimatization - physiology ; Biological and medical sciences ; Biological Transport ; C4 photosynthesis ; carbon dioxide ; Carbon Dioxide - metabolism ; chlorophyll ; Cold Temperature ; cold tolerance ; corn ; Crosses, Genetic ; Electron Transport ; electron transport chain ; Fundamental and applied biological sciences. Psychology ; gas exchange ; Gases - metabolism ; Metabolism ; Miscanthus ; Miscanthus giganteus ; NADP - metabolism ; Photosynthesis ; Photosynthesis, respiration. Anabolism, catabolism ; photosystem II ; plant biochemistry ; Plant physiology and development ; plant-water relations ; Poaceae - metabolism ; Zea mays ; Zea mays - metabolism</subject><ispartof>Planta, 2004-11, Vol.220 (1), p.145-155</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16436982$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15258759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Naidu, S.L</creatorcontrib><creatorcontrib>Long, S.P</creatorcontrib><title>Potential mechanisms of low-temperature tolerance of C4 photosynthesis in Miscanthus x giganteus: an in vivo analysis</title><title>Planta</title><addtitle>Planta</addtitle><description>Miscanthus x giganteus (Greef &amp; Deuter ex Hodkinson &amp; Renvoize) is unique among C4 species in its remarkable ability to maintain high photosynthetic productivity at low temperature, by contrast to the related C4 NADP-malic enzyme-type species Zea mays L. In order to determine the in vivo physiological basis of this difference in photosynthesis, water vapor and CO2 exchange and modulated chlorophyll fluorescence were simultaneously monitored on attached leaf segments from plants grown and measured at 25/20 degrees C or 14/11 degrees C (day/night temperature). Analysis of the response of photosynthesis to internal CO2 concentration suggested that ribulose bisphosphate carboxylase/oxygenase (Rubisco) and/or pyruvate orthophosphate dikinase (PPDK) play a more important role in determining the response to low temperature than does phosphoenolpyruvate carboxylase (PEPc). For both species at both temperatures, the linear relationship between operating efficiency of whole-chain electron transport through photosystem II (phi(PSII)) and the efficiency of CO2 assimilation (phi(CO2)) was unchanged and had a zero intercept, suggesting the absence of non-photosynthetic electron sinks. The major limitation at low temperature could not be solely at Rubisco or at any other point in the Calvin cycle, since this would have increased leakage of CO2 to the mesophyll and increased phi(PSII)/phi(CO2). This in vivo analysis suggested that maintenance of high photosynthetic rates in M. x giganteus at low temperature, in contrast to Z. mays, is most likely the result of different properties of Rubisco and/or PPDK, reduced susceptibility to photoinhibition, and the ability to maintain high levels of leaf absorptance during growth at low temperature.</description><subject>Acclimatization - physiology</subject><subject>Biological and medical sciences</subject><subject>Biological Transport</subject><subject>C4 photosynthesis</subject><subject>carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>chlorophyll</subject><subject>Cold Temperature</subject><subject>cold tolerance</subject><subject>corn</subject><subject>Crosses, Genetic</subject><subject>Electron Transport</subject><subject>electron transport chain</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gas exchange</subject><subject>Gases - metabolism</subject><subject>Metabolism</subject><subject>Miscanthus</subject><subject>Miscanthus giganteus</subject><subject>NADP - metabolism</subject><subject>Photosynthesis</subject><subject>Photosynthesis, respiration. Anabolism, catabolism</subject><subject>photosystem II</subject><subject>plant biochemistry</subject><subject>Plant physiology and development</subject><subject>plant-water relations</subject><subject>Poaceae - metabolism</subject><subject>Zea mays</subject><subject>Zea mays - metabolism</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkEFv1DAQhS0EotvCD-ACvsAtMLZjO-ZWraAgFYEEPUeTZLxrlMRL7BT23-NVF3GZeaP3aTRvGHsh4K0AsO8SQC11VWollJSVecQ2olayklA3j9kGoGhwSl-wy5R-AhTT2qfsQmipG6vdhq3fYqY5Bxz5RP0e55CmxKPnY_xdZZoOtGBeF-I5jkXOPZ3Mbc0P-5hjOs55TykkHmb-JaQey7wm_ofvwq5oWtN7jvPJvQ_3sUgcjwV_xp54HBM9P_crdvfxw4_tp-r2683n7fVt5YVtcuW0w8548LIEaQZLGhx6oxzU1HTK9UYgWmkEuUEJ4frGq7qTWqmOhgFrdcXePOw9LPHXSim3UzmSxhFnimtqjYVGOy0L-PIMrt1EQ3tYwoTLsf33qAK8PgNYUo7-9IqQ_nOmVsY1p0WvHjiPscXdUpi77xKEAgFGCmvUX4eiglo</recordid><startdate>200411</startdate><enddate>200411</enddate><creator>Naidu, S.L</creator><creator>Long, S.P</creator><general>Springer</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200411</creationdate><title>Potential mechanisms of low-temperature tolerance of C4 photosynthesis in Miscanthus x giganteus: an in vivo analysis</title><author>Naidu, S.L ; Long, S.P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f178t-959ab6f0f20328d7e509af63904e8b39c61aa7261e9d3119c8f34b2533bedda43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acclimatization - physiology</topic><topic>Biological and medical sciences</topic><topic>Biological Transport</topic><topic>C4 photosynthesis</topic><topic>carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>chlorophyll</topic><topic>Cold Temperature</topic><topic>cold tolerance</topic><topic>corn</topic><topic>Crosses, Genetic</topic><topic>Electron Transport</topic><topic>electron transport chain</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gas exchange</topic><topic>Gases - metabolism</topic><topic>Metabolism</topic><topic>Miscanthus</topic><topic>Miscanthus giganteus</topic><topic>NADP - metabolism</topic><topic>Photosynthesis</topic><topic>Photosynthesis, respiration. Anabolism, catabolism</topic><topic>photosystem II</topic><topic>plant biochemistry</topic><topic>Plant physiology and development</topic><topic>plant-water relations</topic><topic>Poaceae - metabolism</topic><topic>Zea mays</topic><topic>Zea mays - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naidu, S.L</creatorcontrib><creatorcontrib>Long, S.P</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naidu, S.L</au><au>Long, S.P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential mechanisms of low-temperature tolerance of C4 photosynthesis in Miscanthus x giganteus: an in vivo analysis</atitle><jtitle>Planta</jtitle><addtitle>Planta</addtitle><date>2004-11</date><risdate>2004</risdate><volume>220</volume><issue>1</issue><spage>145</spage><epage>155</epage><pages>145-155</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>Miscanthus x giganteus (Greef &amp; Deuter ex Hodkinson &amp; Renvoize) is unique among C4 species in its remarkable ability to maintain high photosynthetic productivity at low temperature, by contrast to the related C4 NADP-malic enzyme-type species Zea mays L. In order to determine the in vivo physiological basis of this difference in photosynthesis, water vapor and CO2 exchange and modulated chlorophyll fluorescence were simultaneously monitored on attached leaf segments from plants grown and measured at 25/20 degrees C or 14/11 degrees C (day/night temperature). Analysis of the response of photosynthesis to internal CO2 concentration suggested that ribulose bisphosphate carboxylase/oxygenase (Rubisco) and/or pyruvate orthophosphate dikinase (PPDK) play a more important role in determining the response to low temperature than does phosphoenolpyruvate carboxylase (PEPc). For both species at both temperatures, the linear relationship between operating efficiency of whole-chain electron transport through photosystem II (phi(PSII)) and the efficiency of CO2 assimilation (phi(CO2)) was unchanged and had a zero intercept, suggesting the absence of non-photosynthetic electron sinks. The major limitation at low temperature could not be solely at Rubisco or at any other point in the Calvin cycle, since this would have increased leakage of CO2 to the mesophyll and increased phi(PSII)/phi(CO2). This in vivo analysis suggested that maintenance of high photosynthetic rates in M. x giganteus at low temperature, in contrast to Z. mays, is most likely the result of different properties of Rubisco and/or PPDK, reduced susceptibility to photoinhibition, and the ability to maintain high levels of leaf absorptance during growth at low temperature.</abstract><cop>Berlin</cop><pub>Springer</pub><pmid>15258759</pmid><doi>10.1007/s00425-004-1322-6</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2004-11, Vol.220 (1), p.145-155
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_67085952
source Jstor Complete Legacy; MEDLINE; SpringerLink Journals
subjects Acclimatization - physiology
Biological and medical sciences
Biological Transport
C4 photosynthesis
carbon dioxide
Carbon Dioxide - metabolism
chlorophyll
Cold Temperature
cold tolerance
corn
Crosses, Genetic
Electron Transport
electron transport chain
Fundamental and applied biological sciences. Psychology
gas exchange
Gases - metabolism
Metabolism
Miscanthus
Miscanthus giganteus
NADP - metabolism
Photosynthesis
Photosynthesis, respiration. Anabolism, catabolism
photosystem II
plant biochemistry
Plant physiology and development
plant-water relations
Poaceae - metabolism
Zea mays
Zea mays - metabolism
title Potential mechanisms of low-temperature tolerance of C4 photosynthesis in Miscanthus x giganteus: an in vivo analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20mechanisms%20of%20low-temperature%20tolerance%20of%20C4%20photosynthesis%20in%20Miscanthus%20x%20giganteus:%20an%20in%20vivo%20analysis&rft.jtitle=Planta&rft.au=Naidu,%20S.L&rft.date=2004-11&rft.volume=220&rft.issue=1&rft.spage=145&rft.epage=155&rft.pages=145-155&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/s00425-004-1322-6&rft_dat=%3Cproquest_pubme%3E67085952%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67085952&rft_id=info:pmid/15258759&rfr_iscdi=true