Sulfatases: Structure, Mechanism, Biological Activity, Inhibition, and Synthetic Utility

Sulfatases, which cleave sulfate esters in biological systems, play a key role in regulating the sulfation states that determine the function of many physiological molecules. Sulfatase substrates range from small cytosolic steroids, such as estrogen sulfate, to complex cell‐surface carbohydrates, su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2004-11, Vol.43 (43), p.5736-5763
Hauptverfasser: Hanson, Sarah R., Best, Michael D., Wong, Chi-Huey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5763
container_issue 43
container_start_page 5736
container_title Angewandte Chemie International Edition
container_volume 43
creator Hanson, Sarah R.
Best, Michael D.
Wong, Chi-Huey
description Sulfatases, which cleave sulfate esters in biological systems, play a key role in regulating the sulfation states that determine the function of many physiological molecules. Sulfatase substrates range from small cytosolic steroids, such as estrogen sulfate, to complex cell‐surface carbohydrates, such as the glycosaminoglycans. The transformation of these molecules has been linked with important cellular functions, including hormone regulation, cellular degradation, and modulation of signaling pathways. Sulfatases have also been implicated in the onset of various pathophysiological conditions, including hormone‐dependent cancers, lysosomal storage disorders, developmental abnormalities, and bacterial pathogenesis. These findings have increased interest in sulfatases and in targeting them for therapeutic endeavors. Although numerous sulfatases have been identified, the wide scope of their biological activity is only beginning to emerge. Herein, accounts of the diversity and growing biological relevance of sulfatases are provided along with an overview of the current understanding of sulfatase structure, mechanism, and inhibition. Through the cleavage of sulfate esters sulfatases modulate the activity of a broad range of small molecules and proteoglycans (see picture). These enzymes play critical roles in a number of biological events, including lysosomal degradation, hormone regulation, and signaling processes. The structures of sulfatases, their mechanisms of action, their potential as targets for small‐molecule intervention, and applications in synthesis are discussed.
doi_str_mv 10.1002/anie.200300632
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67063069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67063069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4762-6d3414a76495edf4e0d5545d21f2a9f758d148414b6107671c0e2d6eb44230b33</originalsourceid><addsrcrecordid>eNqFkM1P2zAYh61p01pgV44op52azt9OdisMSiUoQoVtN8tx3lCzNGGxA_S_n1GrjltPfg_P75H8IHRM8JhgTL-ZxsGYYswwlox-QEMiKEmZUuxjvDljqcoEGaAD7x8jn2VYfkYDInjOsMiG6PeirysTjAf_PVmErreh72CUXINdRrdfjZJT19btg7OmTiY2uGcX1qNk1ixd4YJrm1FimjJZrJuwhOBsch9cHZEj9KkytYcv2_cQ3V-c351dplc309nZ5Cq1XEmaypJxwo2SPBdQVhxwKQQXJSUVNXmlRFYSnkWkkAQrqYjFQEsJBeeU4YKxQ_R1433q2r89-KBXzluoa9NA23stVQyDZb4XpIRxpmgWwfEGtF3rfQeVfurcynRrTbB-i67foutd9Dg42Zr7YgXlf3xbOQL5BnhxNaz36PRkPjt_L083W-cDvO62pvsTv8aU0L_mUy0ufk7np5c_9C37B0H4nAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21343728</pqid></control><display><type>article</type><title>Sulfatases: Structure, Mechanism, Biological Activity, Inhibition, and Synthetic Utility</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hanson, Sarah R. ; Best, Michael D. ; Wong, Chi-Huey</creator><creatorcontrib>Hanson, Sarah R. ; Best, Michael D. ; Wong, Chi-Huey</creatorcontrib><description>Sulfatases, which cleave sulfate esters in biological systems, play a key role in regulating the sulfation states that determine the function of many physiological molecules. Sulfatase substrates range from small cytosolic steroids, such as estrogen sulfate, to complex cell‐surface carbohydrates, such as the glycosaminoglycans. The transformation of these molecules has been linked with important cellular functions, including hormone regulation, cellular degradation, and modulation of signaling pathways. Sulfatases have also been implicated in the onset of various pathophysiological conditions, including hormone‐dependent cancers, lysosomal storage disorders, developmental abnormalities, and bacterial pathogenesis. These findings have increased interest in sulfatases and in targeting them for therapeutic endeavors. Although numerous sulfatases have been identified, the wide scope of their biological activity is only beginning to emerge. Herein, accounts of the diversity and growing biological relevance of sulfatases are provided along with an overview of the current understanding of sulfatase structure, mechanism, and inhibition. Through the cleavage of sulfate esters sulfatases modulate the activity of a broad range of small molecules and proteoglycans (see picture). These enzymes play critical roles in a number of biological events, including lysosomal degradation, hormone regulation, and signaling processes. The structures of sulfatases, their mechanisms of action, their potential as targets for small‐molecule intervention, and applications in synthesis are discussed.</description><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.200300632</identifier><identifier>PMID: 15493058</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Amino Acid Sequence ; Binding Sites ; Cell Membrane - metabolism ; chemoenzymatic synthesis ; Enzyme Inhibitors - pharmacology ; glycosaminoglycans ; heparan sulfate ; Hormones - metabolism ; inhibitors ; Molecular Sequence Data ; Protein Conformation ; Signal Transduction - physiology ; Substrate Specificity ; sulfatases ; Sulfatases - antagonists &amp; inhibitors ; Sulfatases - chemistry ; Sulfatases - metabolism</subject><ispartof>Angewandte Chemie International Edition, 2004-11, Vol.43 (43), p.5736-5763</ispartof><rights>Copyright © 2004 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4762-6d3414a76495edf4e0d5545d21f2a9f758d148414b6107671c0e2d6eb44230b33</citedby><cites>FETCH-LOGICAL-c4762-6d3414a76495edf4e0d5545d21f2a9f758d148414b6107671c0e2d6eb44230b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.200300632$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.200300632$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15493058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hanson, Sarah R.</creatorcontrib><creatorcontrib>Best, Michael D.</creatorcontrib><creatorcontrib>Wong, Chi-Huey</creatorcontrib><title>Sulfatases: Structure, Mechanism, Biological Activity, Inhibition, and Synthetic Utility</title><title>Angewandte Chemie International Edition</title><addtitle>Angewandte Chemie International Edition</addtitle><description>Sulfatases, which cleave sulfate esters in biological systems, play a key role in regulating the sulfation states that determine the function of many physiological molecules. Sulfatase substrates range from small cytosolic steroids, such as estrogen sulfate, to complex cell‐surface carbohydrates, such as the glycosaminoglycans. The transformation of these molecules has been linked with important cellular functions, including hormone regulation, cellular degradation, and modulation of signaling pathways. Sulfatases have also been implicated in the onset of various pathophysiological conditions, including hormone‐dependent cancers, lysosomal storage disorders, developmental abnormalities, and bacterial pathogenesis. These findings have increased interest in sulfatases and in targeting them for therapeutic endeavors. Although numerous sulfatases have been identified, the wide scope of their biological activity is only beginning to emerge. Herein, accounts of the diversity and growing biological relevance of sulfatases are provided along with an overview of the current understanding of sulfatase structure, mechanism, and inhibition. Through the cleavage of sulfate esters sulfatases modulate the activity of a broad range of small molecules and proteoglycans (see picture). These enzymes play critical roles in a number of biological events, including lysosomal degradation, hormone regulation, and signaling processes. The structures of sulfatases, their mechanisms of action, their potential as targets for small‐molecule intervention, and applications in synthesis are discussed.</description><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Cell Membrane - metabolism</subject><subject>chemoenzymatic synthesis</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>glycosaminoglycans</subject><subject>heparan sulfate</subject><subject>Hormones - metabolism</subject><subject>inhibitors</subject><subject>Molecular Sequence Data</subject><subject>Protein Conformation</subject><subject>Signal Transduction - physiology</subject><subject>Substrate Specificity</subject><subject>sulfatases</subject><subject>Sulfatases - antagonists &amp; inhibitors</subject><subject>Sulfatases - chemistry</subject><subject>Sulfatases - metabolism</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1P2zAYh61p01pgV44op52azt9OdisMSiUoQoVtN8tx3lCzNGGxA_S_n1GrjltPfg_P75H8IHRM8JhgTL-ZxsGYYswwlox-QEMiKEmZUuxjvDljqcoEGaAD7x8jn2VYfkYDInjOsMiG6PeirysTjAf_PVmErreh72CUXINdRrdfjZJT19btg7OmTiY2uGcX1qNk1ixd4YJrm1FimjJZrJuwhOBsch9cHZEj9KkytYcv2_cQ3V-c351dplc309nZ5Cq1XEmaypJxwo2SPBdQVhxwKQQXJSUVNXmlRFYSnkWkkAQrqYjFQEsJBeeU4YKxQ_R1433q2r89-KBXzluoa9NA23stVQyDZb4XpIRxpmgWwfEGtF3rfQeVfurcynRrTbB-i67foutd9Dg42Zr7YgXlf3xbOQL5BnhxNaz36PRkPjt_L083W-cDvO62pvsTv8aU0L_mUy0ufk7np5c_9C37B0H4nAQ</recordid><startdate>20041105</startdate><enddate>20041105</enddate><creator>Hanson, Sarah R.</creator><creator>Best, Michael D.</creator><creator>Wong, Chi-Huey</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20041105</creationdate><title>Sulfatases: Structure, Mechanism, Biological Activity, Inhibition, and Synthetic Utility</title><author>Hanson, Sarah R. ; Best, Michael D. ; Wong, Chi-Huey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4762-6d3414a76495edf4e0d5545d21f2a9f758d148414b6107671c0e2d6eb44230b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Cell Membrane - metabolism</topic><topic>chemoenzymatic synthesis</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>glycosaminoglycans</topic><topic>heparan sulfate</topic><topic>Hormones - metabolism</topic><topic>inhibitors</topic><topic>Molecular Sequence Data</topic><topic>Protein Conformation</topic><topic>Signal Transduction - physiology</topic><topic>Substrate Specificity</topic><topic>sulfatases</topic><topic>Sulfatases - antagonists &amp; inhibitors</topic><topic>Sulfatases - chemistry</topic><topic>Sulfatases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanson, Sarah R.</creatorcontrib><creatorcontrib>Best, Michael D.</creatorcontrib><creatorcontrib>Wong, Chi-Huey</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanson, Sarah R.</au><au>Best, Michael D.</au><au>Wong, Chi-Huey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfatases: Structure, Mechanism, Biological Activity, Inhibition, and Synthetic Utility</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angewandte Chemie International Edition</addtitle><date>2004-11-05</date><risdate>2004</risdate><volume>43</volume><issue>43</issue><spage>5736</spage><epage>5763</epage><pages>5736-5763</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Sulfatases, which cleave sulfate esters in biological systems, play a key role in regulating the sulfation states that determine the function of many physiological molecules. Sulfatase substrates range from small cytosolic steroids, such as estrogen sulfate, to complex cell‐surface carbohydrates, such as the glycosaminoglycans. The transformation of these molecules has been linked with important cellular functions, including hormone regulation, cellular degradation, and modulation of signaling pathways. Sulfatases have also been implicated in the onset of various pathophysiological conditions, including hormone‐dependent cancers, lysosomal storage disorders, developmental abnormalities, and bacterial pathogenesis. These findings have increased interest in sulfatases and in targeting them for therapeutic endeavors. Although numerous sulfatases have been identified, the wide scope of their biological activity is only beginning to emerge. Herein, accounts of the diversity and growing biological relevance of sulfatases are provided along with an overview of the current understanding of sulfatase structure, mechanism, and inhibition. Through the cleavage of sulfate esters sulfatases modulate the activity of a broad range of small molecules and proteoglycans (see picture). These enzymes play critical roles in a number of biological events, including lysosomal degradation, hormone regulation, and signaling processes. The structures of sulfatases, their mechanisms of action, their potential as targets for small‐molecule intervention, and applications in synthesis are discussed.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>15493058</pmid><doi>10.1002/anie.200300632</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2004-11, Vol.43 (43), p.5736-5763
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_67063069
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Amino Acid Sequence
Binding Sites
Cell Membrane - metabolism
chemoenzymatic synthesis
Enzyme Inhibitors - pharmacology
glycosaminoglycans
heparan sulfate
Hormones - metabolism
inhibitors
Molecular Sequence Data
Protein Conformation
Signal Transduction - physiology
Substrate Specificity
sulfatases
Sulfatases - antagonists & inhibitors
Sulfatases - chemistry
Sulfatases - metabolism
title Sulfatases: Structure, Mechanism, Biological Activity, Inhibition, and Synthetic Utility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfatases:%20Structure,%20Mechanism,%20Biological%20Activity,%20Inhibition,%20and%20Synthetic%20Utility&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Hanson,%20Sarah%20R.&rft.date=2004-11-05&rft.volume=43&rft.issue=43&rft.spage=5736&rft.epage=5763&rft.pages=5736-5763&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.200300632&rft_dat=%3Cproquest_cross%3E67063069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21343728&rft_id=info:pmid/15493058&rfr_iscdi=true