Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity
Cavity quantum electrodynamics (QED) systems allow the study of a variety of fundamental quantum-optics phenomena, such as entanglement, quantum decoherence and the quantum-classical boundary. Such systems also provide test beds for quantum information science. Nearly all strongly coupled cavity QED...
Gespeichert in:
Veröffentlicht in: | Nature 2004-11, Vol.432 (7014), p.200-203 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 203 |
---|---|
container_issue | 7014 |
container_start_page | 200 |
container_title | Nature |
container_volume | 432 |
creator | Khitrova, G Yoshie, T Scherer, A Hendrickson, J Gibbs, H. M Rupper, G Ell, C Shchekin, O. B Deppe, D. G |
description | Cavity quantum electrodynamics (QED) systems allow the study of a variety of fundamental quantum-optics phenomena, such as entanglement, quantum decoherence and the quantum-classical boundary. Such systems also provide test beds for quantum information science. Nearly all strongly coupled cavity QED experiments have used a single atom in a high-quality-factor (high-Q) cavity. Here we report the experimental realization of a strongly coupled system in the solid state: a single quantum dot embedded in the spacer of a nanocavity, showing vacuum-field Rabi splitting exceeding the decoherence linewidths of both the nanocavity and the quantum dot. This requires a small-volume cavity and an atomic-like two-level system. The photonic crystal slab nanocavity-which traps photons when a defect is introduced inside the two-dimensional photonic bandgap by leaving out one or more holes-has both high Q and small modal volume V, as required for strong light-matter interactions. The quantum dot has two discrete energy levels with a transition dipole moment much larger than that of an atom, and it is fixed in the nanocavity during growth. |
doi_str_mv | 10.1038/nature03119 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67062993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A186287762</galeid><sourcerecordid>A186287762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-380bce85bc7f1b66b26c98d4f9d42609b398d60ac52b180595c7c06e14e00e753</originalsourceid><addsrcrecordid>eNqF0tuL1DAUB-AgijuuPvkuVVAQ7Zo01z4ui5eFBWW9vIY0TbtZOkknSd2d_94MHZwZGZA-pD358gs9HACeI3iGIBYfnEpTMBAjVD8AC0Q4KwkT_CFYQFiJEgrMTsCTGG8hhBRx8hicIEpxLuMF-PZL6WlaFteqsUUcB5uSdX1xZ9NNoYqY3wdTrCblUkatT4V1uT7e-OSd1YUO65jUUDjlvFa_bVo_BY86NUTzbLuegp-fPv64-FJeff18eXF-VWrKSSqxgI02gjaad6hhrKmYrkVLurolFYN1g_MXg0rTqkEC0ppqriEziBgIDaf4FLyZc8fgV5OJSS5t1GYYlDN-ipJxyKq6xv-FlSCYMiIyfPUPvPVTcPknZAUJZXUtNmnljHo1GGld51NQujfOBDV4Zzqby-dIsEpwzqpd6IHXo13JfXR2BOWnNUurj6a-PTiQTTL3qVdTjPLy-_WhfTdbHXyMwXRyDHapwloiKDcDJPcGKOsX2yZMzdK0O7udmAxeb4GKWg1dUE7buHP5WoT5ppvvZxfzlutN2HXz-L0vZz4X_-btmz86reXF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204569983</pqid></control><display><type>article</type><title>Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Khitrova, G ; Yoshie, T ; Scherer, A ; Hendrickson, J ; Gibbs, H. M ; Rupper, G ; Ell, C ; Shchekin, O. B ; Deppe, D. G</creator><creatorcontrib>Khitrova, G ; Yoshie, T ; Scherer, A ; Hendrickson, J ; Gibbs, H. M ; Rupper, G ; Ell, C ; Shchekin, O. B ; Deppe, D. G</creatorcontrib><description>Cavity quantum electrodynamics (QED) systems allow the study of a variety of fundamental quantum-optics phenomena, such as entanglement, quantum decoherence and the quantum-classical boundary. Such systems also provide test beds for quantum information science. Nearly all strongly coupled cavity QED experiments have used a single atom in a high-quality-factor (high-Q) cavity. Here we report the experimental realization of a strongly coupled system in the solid state: a single quantum dot embedded in the spacer of a nanocavity, showing vacuum-field Rabi splitting exceeding the decoherence linewidths of both the nanocavity and the quantum dot. This requires a small-volume cavity and an atomic-like two-level system. The photonic crystal slab nanocavity-which traps photons when a defect is introduced inside the two-dimensional photonic bandgap by leaving out one or more holes-has both high Q and small modal volume V, as required for strong light-matter interactions. The quantum dot has two discrete energy levels with a transition dipole moment much larger than that of an atom, and it is fixed in the nanocavity during growth.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature03119</identifier><identifier>PMID: 15538363</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Atoms & subatomic particles ; Classical and quantum physics: mechanics and fields ; Energy ; Exact sciences and technology ; Foundations, theory of measurement, miscellaneous theories (including aharonov-bohm effect, bell inequalities, berry's phase) ; Fundamental areas of phenomenology (including applications) ; Humanities and Social Sciences ; letter ; multidisciplinary ; Optics ; Physics ; Quantum description of interaction of light and matter; related experiments ; Quantum dots ; Quantum mechanics ; Quantum optics ; Science ; Science (multidisciplinary)</subject><ispartof>Nature, 2004-11, Vol.432 (7014), p.200-203</ispartof><rights>Macmillan Magazines Ltd. 2004</rights><rights>2005 INIST-CNRS</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Nov 11, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-380bce85bc7f1b66b26c98d4f9d42609b398d60ac52b180595c7c06e14e00e753</citedby><cites>FETCH-LOGICAL-c574t-380bce85bc7f1b66b26c98d4f9d42609b398d60ac52b180595c7c06e14e00e753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16281378$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15538363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khitrova, G</creatorcontrib><creatorcontrib>Yoshie, T</creatorcontrib><creatorcontrib>Scherer, A</creatorcontrib><creatorcontrib>Hendrickson, J</creatorcontrib><creatorcontrib>Gibbs, H. M</creatorcontrib><creatorcontrib>Rupper, G</creatorcontrib><creatorcontrib>Ell, C</creatorcontrib><creatorcontrib>Shchekin, O. B</creatorcontrib><creatorcontrib>Deppe, D. G</creatorcontrib><title>Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity</title><title>Nature</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Cavity quantum electrodynamics (QED) systems allow the study of a variety of fundamental quantum-optics phenomena, such as entanglement, quantum decoherence and the quantum-classical boundary. Such systems also provide test beds for quantum information science. Nearly all strongly coupled cavity QED experiments have used a single atom in a high-quality-factor (high-Q) cavity. Here we report the experimental realization of a strongly coupled system in the solid state: a single quantum dot embedded in the spacer of a nanocavity, showing vacuum-field Rabi splitting exceeding the decoherence linewidths of both the nanocavity and the quantum dot. This requires a small-volume cavity and an atomic-like two-level system. The photonic crystal slab nanocavity-which traps photons when a defect is introduced inside the two-dimensional photonic bandgap by leaving out one or more holes-has both high Q and small modal volume V, as required for strong light-matter interactions. The quantum dot has two discrete energy levels with a transition dipole moment much larger than that of an atom, and it is fixed in the nanocavity during growth.</description><subject>Atoms & subatomic particles</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Foundations, theory of measurement, miscellaneous theories (including aharonov-bohm effect, bell inequalities, berry's phase)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>multidisciplinary</subject><subject>Optics</subject><subject>Physics</subject><subject>Quantum description of interaction of light and matter; related experiments</subject><subject>Quantum dots</subject><subject>Quantum mechanics</subject><subject>Quantum optics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0tuL1DAUB-AgijuuPvkuVVAQ7Zo01z4ui5eFBWW9vIY0TbtZOkknSd2d_94MHZwZGZA-pD358gs9HACeI3iGIBYfnEpTMBAjVD8AC0Q4KwkT_CFYQFiJEgrMTsCTGG8hhBRx8hicIEpxLuMF-PZL6WlaFteqsUUcB5uSdX1xZ9NNoYqY3wdTrCblUkatT4V1uT7e-OSd1YUO65jUUDjlvFa_bVo_BY86NUTzbLuegp-fPv64-FJeff18eXF-VWrKSSqxgI02gjaad6hhrKmYrkVLurolFYN1g_MXg0rTqkEC0ppqriEziBgIDaf4FLyZc8fgV5OJSS5t1GYYlDN-ipJxyKq6xv-FlSCYMiIyfPUPvPVTcPknZAUJZXUtNmnljHo1GGld51NQujfOBDV4Zzqby-dIsEpwzqpd6IHXo13JfXR2BOWnNUurj6a-PTiQTTL3qVdTjPLy-_WhfTdbHXyMwXRyDHapwloiKDcDJPcGKOsX2yZMzdK0O7udmAxeb4GKWg1dUE7buHP5WoT5ppvvZxfzlutN2HXz-L0vZz4X_-btmz86reXF</recordid><startdate>20041111</startdate><enddate>20041111</enddate><creator>Khitrova, G</creator><creator>Yoshie, T</creator><creator>Scherer, A</creator><creator>Hendrickson, J</creator><creator>Gibbs, H. M</creator><creator>Rupper, G</creator><creator>Ell, C</creator><creator>Shchekin, O. B</creator><creator>Deppe, D. G</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20041111</creationdate><title>Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity</title><author>Khitrova, G ; Yoshie, T ; Scherer, A ; Hendrickson, J ; Gibbs, H. M ; Rupper, G ; Ell, C ; Shchekin, O. B ; Deppe, D. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-380bce85bc7f1b66b26c98d4f9d42609b398d60ac52b180595c7c06e14e00e753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Atoms & subatomic particles</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Foundations, theory of measurement, miscellaneous theories (including aharonov-bohm effect, bell inequalities, berry's phase)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>multidisciplinary</topic><topic>Optics</topic><topic>Physics</topic><topic>Quantum description of interaction of light and matter; related experiments</topic><topic>Quantum dots</topic><topic>Quantum mechanics</topic><topic>Quantum optics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khitrova, G</creatorcontrib><creatorcontrib>Yoshie, T</creatorcontrib><creatorcontrib>Scherer, A</creatorcontrib><creatorcontrib>Hendrickson, J</creatorcontrib><creatorcontrib>Gibbs, H. M</creatorcontrib><creatorcontrib>Rupper, G</creatorcontrib><creatorcontrib>Ell, C</creatorcontrib><creatorcontrib>Shchekin, O. B</creatorcontrib><creatorcontrib>Deppe, D. G</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khitrova, G</au><au>Yoshie, T</au><au>Scherer, A</au><au>Hendrickson, J</au><au>Gibbs, H. M</au><au>Rupper, G</au><au>Ell, C</au><au>Shchekin, O. B</au><au>Deppe, D. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity</atitle><jtitle>Nature</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2004-11-11</date><risdate>2004</risdate><volume>432</volume><issue>7014</issue><spage>200</spage><epage>203</epage><pages>200-203</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Cavity quantum electrodynamics (QED) systems allow the study of a variety of fundamental quantum-optics phenomena, such as entanglement, quantum decoherence and the quantum-classical boundary. Such systems also provide test beds for quantum information science. Nearly all strongly coupled cavity QED experiments have used a single atom in a high-quality-factor (high-Q) cavity. Here we report the experimental realization of a strongly coupled system in the solid state: a single quantum dot embedded in the spacer of a nanocavity, showing vacuum-field Rabi splitting exceeding the decoherence linewidths of both the nanocavity and the quantum dot. This requires a small-volume cavity and an atomic-like two-level system. The photonic crystal slab nanocavity-which traps photons when a defect is introduced inside the two-dimensional photonic bandgap by leaving out one or more holes-has both high Q and small modal volume V, as required for strong light-matter interactions. The quantum dot has two discrete energy levels with a transition dipole moment much larger than that of an atom, and it is fixed in the nanocavity during growth.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15538363</pmid><doi>10.1038/nature03119</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature, 2004-11, Vol.432 (7014), p.200-203 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_67062993 |
source | Nature; Alma/SFX Local Collection |
subjects | Atoms & subatomic particles Classical and quantum physics: mechanics and fields Energy Exact sciences and technology Foundations, theory of measurement, miscellaneous theories (including aharonov-bohm effect, bell inequalities, berry's phase) Fundamental areas of phenomenology (including applications) Humanities and Social Sciences letter multidisciplinary Optics Physics Quantum description of interaction of light and matter related experiments Quantum dots Quantum mechanics Quantum optics Science Science (multidisciplinary) |
title | Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vacuum%20Rabi%20splitting%20with%20a%20single%20quantum%20dot%20in%20a%20photonic%20crystal%20nanocavity&rft.jtitle=Nature&rft.au=Khitrova,%20G&rft.date=2004-11-11&rft.volume=432&rft.issue=7014&rft.spage=200&rft.epage=203&rft.pages=200-203&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature03119&rft_dat=%3Cgale_proqu%3EA186287762%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204569983&rft_id=info:pmid/15538363&rft_galeid=A186287762&rfr_iscdi=true |