Identifying Hypertension-Related Comorbidities From Administrative Data: What's the Optimal Approach?
The objective was to determine the best strategy for identifying outpatients with hypertension-related diagnoses using Veterans Affairs (VA) administrative databases. We reviewed 1176 outpatient charts from 10 VA sites in 1999, taking the presence of 11 diagnoses relevant to hypertension management...
Gespeichert in:
Veröffentlicht in: | American journal of medical quality 2004-09, Vol.19 (5), p.201-206 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 206 |
---|---|
container_issue | 5 |
container_start_page | 201 |
container_title | American journal of medical quality |
container_volume | 19 |
creator | Borzecki, Ann M. Wong, Ashley T. Hickey, Elaine C. Ash, Arlene S. Berlowitz, Dan R. |
description | The objective was to determine the best strategy for identifying outpatients with hypertension-related diagnoses using Veterans Affairs (VA) administrative databases. We reviewed 1176 outpatient charts from 10 VA sites in 1999, taking the presence of 11 diagnoses relevant to hypertension management as the "gold standard" for identifying the comorbidity. We calculated agreement, sensitivity, and specificity for the chart versus several administrative data-based algorithms. Using 1999 data and requiring 1 administrative diagnosis, observed agreement ranged from 0.98 (atrial fibrillation) to 0.85 (hyperlipidemia), and kappas were generally high. Sensitivity varied from 38% (tobacco use) to 97% (diabetes); specificity exceeded 91% for 10 of 11 diagnoses. Requiring 2 years of data and 2 diagnoses improved most measures, with minimal sensitivity decrease. Agreement between the database and charts was good. Administrative data varied in its ability to identify all patients with a given diagnosis but identified accurately those without. The best strategy for case-finding required 2 diagnoses in a 2-year period. |
doi_str_mv | 10.1177/106286060401900504 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_67059008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_106286060401900504</sage_id><sourcerecordid>67059008</sourcerecordid><originalsourceid>FETCH-LOGICAL-p179t-2a390fc9a9e147ad417db099534a77cd8dedebdb42a3bd4dfd69725d4ff95c8f3</originalsourceid><addsrcrecordid>eNpl0E1LAzEQBuAgiq3VP-BBctLT2mQ32Wy8SKnWFgoFUfS2ZDezbcp-maRC_70p1pOnmcPDzMuL0DUl95QKMaYkjbOUpIQRKgnhhJ2gIeWcR1nMPk_DHkB0EAN04dyWkJhzRs_RIKAkljQeIlhoaL2p9qZd4_m-B-uhdaZro1eolQeNp13T2cJo4w04PLNdgye6Ma1x3ipvvgE_Ka8e8MdG-TuH_QbwqvemUTWe9L3tVLl5vERnlaodXB3nCL3Pnt-m82i5ellMJ8uop0L6KFaJJFUplQTKhNKMCl0QKXnClBClzjRoKHTBAiw005VOpYi5ZlUleZlVyQjd_t4Nf7924HzeGFdCXasWup3LU0F4aCoL8OYId0UDOu9tCGz3-V8xAYx_gVNryLfdzrYheE5Jfqg-_1998gNZAXT1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67059008</pqid></control><display><type>article</type><title>Identifying Hypertension-Related Comorbidities From Administrative Data: What's the Optimal Approach?</title><source>MEDLINE</source><source>SAGE Complete A-Z List</source><creator>Borzecki, Ann M. ; Wong, Ashley T. ; Hickey, Elaine C. ; Ash, Arlene S. ; Berlowitz, Dan R.</creator><creatorcontrib>Borzecki, Ann M. ; Wong, Ashley T. ; Hickey, Elaine C. ; Ash, Arlene S. ; Berlowitz, Dan R.</creatorcontrib><description>The objective was to determine the best strategy for identifying outpatients with hypertension-related diagnoses using Veterans Affairs (VA) administrative databases. We reviewed 1176 outpatient charts from 10 VA sites in 1999, taking the presence of 11 diagnoses relevant to hypertension management as the "gold standard" for identifying the comorbidity. We calculated agreement, sensitivity, and specificity for the chart versus several administrative data-based algorithms. Using 1999 data and requiring 1 administrative diagnosis, observed agreement ranged from 0.98 (atrial fibrillation) to 0.85 (hyperlipidemia), and kappas were generally high. Sensitivity varied from 38% (tobacco use) to 97% (diabetes); specificity exceeded 91% for 10 of 11 diagnoses. Requiring 2 years of data and 2 diagnoses improved most measures, with minimal sensitivity decrease. Agreement between the database and charts was good. Administrative data varied in its ability to identify all patients with a given diagnosis but identified accurately those without. The best strategy for case-finding required 2 diagnoses in a 2-year period.</description><identifier>ISSN: 1062-8606</identifier><identifier>EISSN: 1555-824X</identifier><identifier>DOI: 10.1177/106286060401900504</identifier><identifier>PMID: 15532912</identifier><language>eng</language><publisher>Thousand Oaks, CA: Sage Publications</publisher><subject>Algorithms ; Humans ; Hypertension - complications ; International Classification of Diseases ; United States ; United States Department of Veterans Affairs</subject><ispartof>American journal of medical quality, 2004-09, Vol.19 (5), p.201-206</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/106286060401900504$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/106286060401900504$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15532912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borzecki, Ann M.</creatorcontrib><creatorcontrib>Wong, Ashley T.</creatorcontrib><creatorcontrib>Hickey, Elaine C.</creatorcontrib><creatorcontrib>Ash, Arlene S.</creatorcontrib><creatorcontrib>Berlowitz, Dan R.</creatorcontrib><title>Identifying Hypertension-Related Comorbidities From Administrative Data: What's the Optimal Approach?</title><title>American journal of medical quality</title><addtitle>Am J Med Qual</addtitle><description>The objective was to determine the best strategy for identifying outpatients with hypertension-related diagnoses using Veterans Affairs (VA) administrative databases. We reviewed 1176 outpatient charts from 10 VA sites in 1999, taking the presence of 11 diagnoses relevant to hypertension management as the "gold standard" for identifying the comorbidity. We calculated agreement, sensitivity, and specificity for the chart versus several administrative data-based algorithms. Using 1999 data and requiring 1 administrative diagnosis, observed agreement ranged from 0.98 (atrial fibrillation) to 0.85 (hyperlipidemia), and kappas were generally high. Sensitivity varied from 38% (tobacco use) to 97% (diabetes); specificity exceeded 91% for 10 of 11 diagnoses. Requiring 2 years of data and 2 diagnoses improved most measures, with minimal sensitivity decrease. Agreement between the database and charts was good. Administrative data varied in its ability to identify all patients with a given diagnosis but identified accurately those without. The best strategy for case-finding required 2 diagnoses in a 2-year period.</description><subject>Algorithms</subject><subject>Humans</subject><subject>Hypertension - complications</subject><subject>International Classification of Diseases</subject><subject>United States</subject><subject>United States Department of Veterans Affairs</subject><issn>1062-8606</issn><issn>1555-824X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0E1LAzEQBuAgiq3VP-BBctLT2mQ32Wy8SKnWFgoFUfS2ZDezbcp-maRC_70p1pOnmcPDzMuL0DUl95QKMaYkjbOUpIQRKgnhhJ2gIeWcR1nMPk_DHkB0EAN04dyWkJhzRs_RIKAkljQeIlhoaL2p9qZd4_m-B-uhdaZro1eolQeNp13T2cJo4w04PLNdgye6Ma1x3ipvvgE_Ka8e8MdG-TuH_QbwqvemUTWe9L3tVLl5vERnlaodXB3nCL3Pnt-m82i5ellMJ8uop0L6KFaJJFUplQTKhNKMCl0QKXnClBClzjRoKHTBAiw005VOpYi5ZlUleZlVyQjd_t4Nf7924HzeGFdCXasWup3LU0F4aCoL8OYId0UDOu9tCGz3-V8xAYx_gVNryLfdzrYheE5Jfqg-_1998gNZAXT1</recordid><startdate>200409</startdate><enddate>200409</enddate><creator>Borzecki, Ann M.</creator><creator>Wong, Ashley T.</creator><creator>Hickey, Elaine C.</creator><creator>Ash, Arlene S.</creator><creator>Berlowitz, Dan R.</creator><general>Sage Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200409</creationdate><title>Identifying Hypertension-Related Comorbidities From Administrative Data: What's the Optimal Approach?</title><author>Borzecki, Ann M. ; Wong, Ashley T. ; Hickey, Elaine C. ; Ash, Arlene S. ; Berlowitz, Dan R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p179t-2a390fc9a9e147ad417db099534a77cd8dedebdb42a3bd4dfd69725d4ff95c8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Humans</topic><topic>Hypertension - complications</topic><topic>International Classification of Diseases</topic><topic>United States</topic><topic>United States Department of Veterans Affairs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borzecki, Ann M.</creatorcontrib><creatorcontrib>Wong, Ashley T.</creatorcontrib><creatorcontrib>Hickey, Elaine C.</creatorcontrib><creatorcontrib>Ash, Arlene S.</creatorcontrib><creatorcontrib>Berlowitz, Dan R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of medical quality</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borzecki, Ann M.</au><au>Wong, Ashley T.</au><au>Hickey, Elaine C.</au><au>Ash, Arlene S.</au><au>Berlowitz, Dan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Hypertension-Related Comorbidities From Administrative Data: What's the Optimal Approach?</atitle><jtitle>American journal of medical quality</jtitle><addtitle>Am J Med Qual</addtitle><date>2004-09</date><risdate>2004</risdate><volume>19</volume><issue>5</issue><spage>201</spage><epage>206</epage><pages>201-206</pages><issn>1062-8606</issn><eissn>1555-824X</eissn><abstract>The objective was to determine the best strategy for identifying outpatients with hypertension-related diagnoses using Veterans Affairs (VA) administrative databases. We reviewed 1176 outpatient charts from 10 VA sites in 1999, taking the presence of 11 diagnoses relevant to hypertension management as the "gold standard" for identifying the comorbidity. We calculated agreement, sensitivity, and specificity for the chart versus several administrative data-based algorithms. Using 1999 data and requiring 1 administrative diagnosis, observed agreement ranged from 0.98 (atrial fibrillation) to 0.85 (hyperlipidemia), and kappas were generally high. Sensitivity varied from 38% (tobacco use) to 97% (diabetes); specificity exceeded 91% for 10 of 11 diagnoses. Requiring 2 years of data and 2 diagnoses improved most measures, with minimal sensitivity decrease. Agreement between the database and charts was good. Administrative data varied in its ability to identify all patients with a given diagnosis but identified accurately those without. The best strategy for case-finding required 2 diagnoses in a 2-year period.</abstract><cop>Thousand Oaks, CA</cop><pub>Sage Publications</pub><pmid>15532912</pmid><doi>10.1177/106286060401900504</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1062-8606 |
ispartof | American journal of medical quality, 2004-09, Vol.19 (5), p.201-206 |
issn | 1062-8606 1555-824X |
language | eng |
recordid | cdi_proquest_miscellaneous_67059008 |
source | MEDLINE; SAGE Complete A-Z List |
subjects | Algorithms Humans Hypertension - complications International Classification of Diseases United States United States Department of Veterans Affairs |
title | Identifying Hypertension-Related Comorbidities From Administrative Data: What's the Optimal Approach? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Hypertension-Related%20Comorbidities%20From%20Administrative%20Data:%20What's%20the%20Optimal%20Approach?&rft.jtitle=American%20journal%20of%20medical%20quality&rft.au=Borzecki,%20Ann%20M.&rft.date=2004-09&rft.volume=19&rft.issue=5&rft.spage=201&rft.epage=206&rft.pages=201-206&rft.issn=1062-8606&rft.eissn=1555-824X&rft_id=info:doi/10.1177/106286060401900504&rft_dat=%3Cproquest_pubme%3E67059008%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67059008&rft_id=info:pmid/15532912&rft_sage_id=10.1177_106286060401900504&rfr_iscdi=true |