Identifying Hypertension-Related Comorbidities From Administrative Data: What's the Optimal Approach?

The objective was to determine the best strategy for identifying outpatients with hypertension-related diagnoses using Veterans Affairs (VA) administrative databases. We reviewed 1176 outpatient charts from 10 VA sites in 1999, taking the presence of 11 diagnoses relevant to hypertension management...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of medical quality 2004-09, Vol.19 (5), p.201-206
Hauptverfasser: Borzecki, Ann M., Wong, Ashley T., Hickey, Elaine C., Ash, Arlene S., Berlowitz, Dan R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 206
container_issue 5
container_start_page 201
container_title American journal of medical quality
container_volume 19
creator Borzecki, Ann M.
Wong, Ashley T.
Hickey, Elaine C.
Ash, Arlene S.
Berlowitz, Dan R.
description The objective was to determine the best strategy for identifying outpatients with hypertension-related diagnoses using Veterans Affairs (VA) administrative databases. We reviewed 1176 outpatient charts from 10 VA sites in 1999, taking the presence of 11 diagnoses relevant to hypertension management as the "gold standard" for identifying the comorbidity. We calculated agreement, sensitivity, and specificity for the chart versus several administrative data-based algorithms. Using 1999 data and requiring 1 administrative diagnosis, observed agreement ranged from 0.98 (atrial fibrillation) to 0.85 (hyperlipidemia), and kappas were generally high. Sensitivity varied from 38% (tobacco use) to 97% (diabetes); specificity exceeded 91% for 10 of 11 diagnoses. Requiring 2 years of data and 2 diagnoses improved most measures, with minimal sensitivity decrease. Agreement between the database and charts was good. Administrative data varied in its ability to identify all patients with a given diagnosis but identified accurately those without. The best strategy for case-finding required 2 diagnoses in a 2-year period.
doi_str_mv 10.1177/106286060401900504
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_67059008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_106286060401900504</sage_id><sourcerecordid>67059008</sourcerecordid><originalsourceid>FETCH-LOGICAL-p179t-2a390fc9a9e147ad417db099534a77cd8dedebdb42a3bd4dfd69725d4ff95c8f3</originalsourceid><addsrcrecordid>eNpl0E1LAzEQBuAgiq3VP-BBctLT2mQ32Wy8SKnWFgoFUfS2ZDezbcp-maRC_70p1pOnmcPDzMuL0DUl95QKMaYkjbOUpIQRKgnhhJ2gIeWcR1nMPk_DHkB0EAN04dyWkJhzRs_RIKAkljQeIlhoaL2p9qZd4_m-B-uhdaZro1eolQeNp13T2cJo4w04PLNdgye6Ma1x3ipvvgE_Ka8e8MdG-TuH_QbwqvemUTWe9L3tVLl5vERnlaodXB3nCL3Pnt-m82i5ellMJ8uop0L6KFaJJFUplQTKhNKMCl0QKXnClBClzjRoKHTBAiw005VOpYi5ZlUleZlVyQjd_t4Nf7924HzeGFdCXasWup3LU0F4aCoL8OYId0UDOu9tCGz3-V8xAYx_gVNryLfdzrYheE5Jfqg-_1998gNZAXT1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67059008</pqid></control><display><type>article</type><title>Identifying Hypertension-Related Comorbidities From Administrative Data: What's the Optimal Approach?</title><source>MEDLINE</source><source>SAGE Complete A-Z List</source><creator>Borzecki, Ann M. ; Wong, Ashley T. ; Hickey, Elaine C. ; Ash, Arlene S. ; Berlowitz, Dan R.</creator><creatorcontrib>Borzecki, Ann M. ; Wong, Ashley T. ; Hickey, Elaine C. ; Ash, Arlene S. ; Berlowitz, Dan R.</creatorcontrib><description>The objective was to determine the best strategy for identifying outpatients with hypertension-related diagnoses using Veterans Affairs (VA) administrative databases. We reviewed 1176 outpatient charts from 10 VA sites in 1999, taking the presence of 11 diagnoses relevant to hypertension management as the "gold standard" for identifying the comorbidity. We calculated agreement, sensitivity, and specificity for the chart versus several administrative data-based algorithms. Using 1999 data and requiring 1 administrative diagnosis, observed agreement ranged from 0.98 (atrial fibrillation) to 0.85 (hyperlipidemia), and kappas were generally high. Sensitivity varied from 38% (tobacco use) to 97% (diabetes); specificity exceeded 91% for 10 of 11 diagnoses. Requiring 2 years of data and 2 diagnoses improved most measures, with minimal sensitivity decrease. Agreement between the database and charts was good. Administrative data varied in its ability to identify all patients with a given diagnosis but identified accurately those without. The best strategy for case-finding required 2 diagnoses in a 2-year period.</description><identifier>ISSN: 1062-8606</identifier><identifier>EISSN: 1555-824X</identifier><identifier>DOI: 10.1177/106286060401900504</identifier><identifier>PMID: 15532912</identifier><language>eng</language><publisher>Thousand Oaks, CA: Sage Publications</publisher><subject>Algorithms ; Humans ; Hypertension - complications ; International Classification of Diseases ; United States ; United States Department of Veterans Affairs</subject><ispartof>American journal of medical quality, 2004-09, Vol.19 (5), p.201-206</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/106286060401900504$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/106286060401900504$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15532912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borzecki, Ann M.</creatorcontrib><creatorcontrib>Wong, Ashley T.</creatorcontrib><creatorcontrib>Hickey, Elaine C.</creatorcontrib><creatorcontrib>Ash, Arlene S.</creatorcontrib><creatorcontrib>Berlowitz, Dan R.</creatorcontrib><title>Identifying Hypertension-Related Comorbidities From Administrative Data: What's the Optimal Approach?</title><title>American journal of medical quality</title><addtitle>Am J Med Qual</addtitle><description>The objective was to determine the best strategy for identifying outpatients with hypertension-related diagnoses using Veterans Affairs (VA) administrative databases. We reviewed 1176 outpatient charts from 10 VA sites in 1999, taking the presence of 11 diagnoses relevant to hypertension management as the "gold standard" for identifying the comorbidity. We calculated agreement, sensitivity, and specificity for the chart versus several administrative data-based algorithms. Using 1999 data and requiring 1 administrative diagnosis, observed agreement ranged from 0.98 (atrial fibrillation) to 0.85 (hyperlipidemia), and kappas were generally high. Sensitivity varied from 38% (tobacco use) to 97% (diabetes); specificity exceeded 91% for 10 of 11 diagnoses. Requiring 2 years of data and 2 diagnoses improved most measures, with minimal sensitivity decrease. Agreement between the database and charts was good. Administrative data varied in its ability to identify all patients with a given diagnosis but identified accurately those without. The best strategy for case-finding required 2 diagnoses in a 2-year period.</description><subject>Algorithms</subject><subject>Humans</subject><subject>Hypertension - complications</subject><subject>International Classification of Diseases</subject><subject>United States</subject><subject>United States Department of Veterans Affairs</subject><issn>1062-8606</issn><issn>1555-824X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0E1LAzEQBuAgiq3VP-BBctLT2mQ32Wy8SKnWFgoFUfS2ZDezbcp-maRC_70p1pOnmcPDzMuL0DUl95QKMaYkjbOUpIQRKgnhhJ2gIeWcR1nMPk_DHkB0EAN04dyWkJhzRs_RIKAkljQeIlhoaL2p9qZd4_m-B-uhdaZro1eolQeNp13T2cJo4w04PLNdgye6Ma1x3ipvvgE_Ka8e8MdG-TuH_QbwqvemUTWe9L3tVLl5vERnlaodXB3nCL3Pnt-m82i5ellMJ8uop0L6KFaJJFUplQTKhNKMCl0QKXnClBClzjRoKHTBAiw005VOpYi5ZlUleZlVyQjd_t4Nf7924HzeGFdCXasWup3LU0F4aCoL8OYId0UDOu9tCGz3-V8xAYx_gVNryLfdzrYheE5Jfqg-_1998gNZAXT1</recordid><startdate>200409</startdate><enddate>200409</enddate><creator>Borzecki, Ann M.</creator><creator>Wong, Ashley T.</creator><creator>Hickey, Elaine C.</creator><creator>Ash, Arlene S.</creator><creator>Berlowitz, Dan R.</creator><general>Sage Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200409</creationdate><title>Identifying Hypertension-Related Comorbidities From Administrative Data: What's the Optimal Approach?</title><author>Borzecki, Ann M. ; Wong, Ashley T. ; Hickey, Elaine C. ; Ash, Arlene S. ; Berlowitz, Dan R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p179t-2a390fc9a9e147ad417db099534a77cd8dedebdb42a3bd4dfd69725d4ff95c8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Humans</topic><topic>Hypertension - complications</topic><topic>International Classification of Diseases</topic><topic>United States</topic><topic>United States Department of Veterans Affairs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borzecki, Ann M.</creatorcontrib><creatorcontrib>Wong, Ashley T.</creatorcontrib><creatorcontrib>Hickey, Elaine C.</creatorcontrib><creatorcontrib>Ash, Arlene S.</creatorcontrib><creatorcontrib>Berlowitz, Dan R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of medical quality</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borzecki, Ann M.</au><au>Wong, Ashley T.</au><au>Hickey, Elaine C.</au><au>Ash, Arlene S.</au><au>Berlowitz, Dan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Hypertension-Related Comorbidities From Administrative Data: What's the Optimal Approach?</atitle><jtitle>American journal of medical quality</jtitle><addtitle>Am J Med Qual</addtitle><date>2004-09</date><risdate>2004</risdate><volume>19</volume><issue>5</issue><spage>201</spage><epage>206</epage><pages>201-206</pages><issn>1062-8606</issn><eissn>1555-824X</eissn><abstract>The objective was to determine the best strategy for identifying outpatients with hypertension-related diagnoses using Veterans Affairs (VA) administrative databases. We reviewed 1176 outpatient charts from 10 VA sites in 1999, taking the presence of 11 diagnoses relevant to hypertension management as the "gold standard" for identifying the comorbidity. We calculated agreement, sensitivity, and specificity for the chart versus several administrative data-based algorithms. Using 1999 data and requiring 1 administrative diagnosis, observed agreement ranged from 0.98 (atrial fibrillation) to 0.85 (hyperlipidemia), and kappas were generally high. Sensitivity varied from 38% (tobacco use) to 97% (diabetes); specificity exceeded 91% for 10 of 11 diagnoses. Requiring 2 years of data and 2 diagnoses improved most measures, with minimal sensitivity decrease. Agreement between the database and charts was good. Administrative data varied in its ability to identify all patients with a given diagnosis but identified accurately those without. The best strategy for case-finding required 2 diagnoses in a 2-year period.</abstract><cop>Thousand Oaks, CA</cop><pub>Sage Publications</pub><pmid>15532912</pmid><doi>10.1177/106286060401900504</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1062-8606
ispartof American journal of medical quality, 2004-09, Vol.19 (5), p.201-206
issn 1062-8606
1555-824X
language eng
recordid cdi_proquest_miscellaneous_67059008
source MEDLINE; SAGE Complete A-Z List
subjects Algorithms
Humans
Hypertension - complications
International Classification of Diseases
United States
United States Department of Veterans Affairs
title Identifying Hypertension-Related Comorbidities From Administrative Data: What's the Optimal Approach?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Hypertension-Related%20Comorbidities%20From%20Administrative%20Data:%20What's%20the%20Optimal%20Approach?&rft.jtitle=American%20journal%20of%20medical%20quality&rft.au=Borzecki,%20Ann%20M.&rft.date=2004-09&rft.volume=19&rft.issue=5&rft.spage=201&rft.epage=206&rft.pages=201-206&rft.issn=1062-8606&rft.eissn=1555-824X&rft_id=info:doi/10.1177/106286060401900504&rft_dat=%3Cproquest_pubme%3E67059008%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67059008&rft_id=info:pmid/15532912&rft_sage_id=10.1177_106286060401900504&rfr_iscdi=true