Nitrate tolerance as a model of vascular dysfunction: Roles for mitochondrial aldehyde dehydrogenase and mitochondrial oxidative stress

Organic nitrates are a group of very effective anti-ischemic drugs. They are used for the treatment of patients with stable angina, acute myocardial infarction and chronic congestive heart failure. A major therapeutic limitation inherent to organic nitrates is the development of tolerance, which occ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacological reports 2009-01, Vol.61 (1), p.33-48
Hauptverfasser: Daiber, Andreas, Oelze, Matthias, Wenzel, Philip, Dias Wickramanayake, Jennifer M., Schuhmacher, Swenja, Jansen, Thomas, Lackner, Karl J., Torzewski, Michael, Münzel, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 33
container_title Pharmacological reports
container_volume 61
creator Daiber, Andreas
Oelze, Matthias
Wenzel, Philip
Dias Wickramanayake, Jennifer M.
Schuhmacher, Swenja
Jansen, Thomas
Lackner, Karl J.
Torzewski, Michael
Münzel, Thomas
description Organic nitrates are a group of very effective anti-ischemic drugs. They are used for the treatment of patients with stable angina, acute myocardial infarction and chronic congestive heart failure. A major therapeutic limitation inherent to organic nitrates is the development of tolerance, which occurs during chronic treatment with these agents. The mechanisms underlying nitrate tolerance remain incompletely defined and are likely multifactorial. One mechanism seems to be a diminished bioconversion of nitroglycerin, another seems to be the induction of vascular oxidative stress, and a third may include neurohumoral adaptations. Recent studies have revealed that mitochondrial reactive oxygen species (ROS) formation and a subsequent oxidative inactivation of nitrate reductase, the mitochondrial aldehyde dehydrogenase (ALDH-2), play an important role in the development of nitrate and crosstolerance. The present review focus first on the role of oxidative stress and second on the role of ALDH-2 in organic nitrate bioactivation leading to the development of tolerance and cross-tolerance (endothelial dysfunction) in response to nitroglycerin treatment. Recently, the role of mitochondrial oxidative stress in the development of nitrate tolerance was demonstrated in a mouse model with a heterozygous deletion of manganese superoxide dismutase (MnSOD+/−), which is the mitochondrial isoform of this enzyme. Studies from our own laboratory have provided evidence for cross-talk between mitochondrial and cytosolic (Nox-dependent) sources of ROS. We close this review by focusing on the protective properties of the organic nitrate pentaerithrityl tetranitrate, which upregulates enzymes that have strong antioxidative activity, such as heme oxygenase-1 and ferritin, thereby preventing the development of tolerance and endothelial dysfunction.
doi_str_mv 10.1016/S1734-1140(09)70005-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67058831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1734114009700052</els_id><sourcerecordid>67058831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-839eb2dbc0b38125b7363de2553c3517d40c9f929b451cbad0f903486c8d32673</originalsourceid><addsrcrecordid>eNqFkctuFDEQRS0EIkPgE0BeIVg0-NF2t9lEKOIlRSDxWFtuuzpx1N0OLveI-QJ-G2dmBBKbrGpR595S3UvIU85eccb162-8k23DecteMPOyY4ypRtwjGyGMaZTu2_tk8xc5IY8QrxlruZDqITnhRrJOG74hvz_Hkl0BWtIE2S0eqEPq6JwCTDSNdOvQr5PLNOxwXBdfYlre0K-VRjqmTOdYkr9KS8jRTdRNAa52Aeh-5HQJi8NquYT_wPQrBlfiFiiWDIiPyYPRTQhPjvOU_Hj_7vv5x-biy4dP528vGt92ujS9NDCIMHg2yJ4LNXRSywBCKeml4l1omTejEWZoFfeDC2w0TLa99n2QQnfylDw_-N7k9HMFLHaO6GGa3AJpRas7pvpe8gqqA-hzQsww2pscZ5d3ljN724DdN2Bv47XM2H0DVlTds-OBdZgh_FMdI6-APgBYV8slZHud1rzUp-90PjsIoeazjVWIPkJtLMQMvtiQ4h0OfwAGvajd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67058831</pqid></control><display><type>article</type><title>Nitrate tolerance as a model of vascular dysfunction: Roles for mitochondrial aldehyde dehydrogenase and mitochondrial oxidative stress</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Daiber, Andreas ; Oelze, Matthias ; Wenzel, Philip ; Dias Wickramanayake, Jennifer M. ; Schuhmacher, Swenja ; Jansen, Thomas ; Lackner, Karl J. ; Torzewski, Michael ; Münzel, Thomas</creator><creatorcontrib>Daiber, Andreas ; Oelze, Matthias ; Wenzel, Philip ; Dias Wickramanayake, Jennifer M. ; Schuhmacher, Swenja ; Jansen, Thomas ; Lackner, Karl J. ; Torzewski, Michael ; Münzel, Thomas</creatorcontrib><description>Organic nitrates are a group of very effective anti-ischemic drugs. They are used for the treatment of patients with stable angina, acute myocardial infarction and chronic congestive heart failure. A major therapeutic limitation inherent to organic nitrates is the development of tolerance, which occurs during chronic treatment with these agents. The mechanisms underlying nitrate tolerance remain incompletely defined and are likely multifactorial. One mechanism seems to be a diminished bioconversion of nitroglycerin, another seems to be the induction of vascular oxidative stress, and a third may include neurohumoral adaptations. Recent studies have revealed that mitochondrial reactive oxygen species (ROS) formation and a subsequent oxidative inactivation of nitrate reductase, the mitochondrial aldehyde dehydrogenase (ALDH-2), play an important role in the development of nitrate and crosstolerance. The present review focus first on the role of oxidative stress and second on the role of ALDH-2 in organic nitrate bioactivation leading to the development of tolerance and cross-tolerance (endothelial dysfunction) in response to nitroglycerin treatment. Recently, the role of mitochondrial oxidative stress in the development of nitrate tolerance was demonstrated in a mouse model with a heterozygous deletion of manganese superoxide dismutase (MnSOD+/−), which is the mitochondrial isoform of this enzyme. Studies from our own laboratory have provided evidence for cross-talk between mitochondrial and cytosolic (Nox-dependent) sources of ROS. We close this review by focusing on the protective properties of the organic nitrate pentaerithrityl tetranitrate, which upregulates enzymes that have strong antioxidative activity, such as heme oxygenase-1 and ferritin, thereby preventing the development of tolerance and endothelial dysfunction.</description><identifier>ISSN: 1734-1140</identifier><identifier>EISSN: 2299-5684</identifier><identifier>DOI: 10.1016/S1734-1140(09)70005-2</identifier><identifier>PMID: 19307691</identifier><language>eng</language><publisher>Cham: Elsevier Urban &amp; Partner Sp. z o.o</publisher><subject>Aldehyde Dehydrogenase - metabolism ; Aldehyde Dehydrogenase, Mitochondrial ; Animals ; Drug Safety and Pharmacovigilance ; Drug Tolerance ; Endothelium, Vascular - physiopathology ; Heart Diseases - drug therapy ; Heart Diseases - physiopathology ; Humans ; Mitochondria - enzymology ; Mitochondria - metabolism ; mitochondrial aldehyde dehydrogenase ; mitochondrial oxidative stress ; Nitrates - administration &amp; dosage ; Nitrates - pharmacology ; Nitroglycerin - administration &amp; dosage ; Nitroglycerin - pharmacology ; organic nitrate ; Oxidative Stress - drug effects ; peroxynitrite ; Pharmacotherapy ; Pharmacy ; Review ; superoxide ; vascular dysfunction</subject><ispartof>Pharmacological reports, 2009-01, Vol.61 (1), p.33-48</ispartof><rights>2009 Institute of Pharmacology Polish Academy of Sciences</rights><rights>Maj Institute of Pharmacology, Polish Academy of Sciences 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-839eb2dbc0b38125b7363de2553c3517d40c9f929b451cbad0f903486c8d32673</citedby><cites>FETCH-LOGICAL-c476t-839eb2dbc0b38125b7363de2553c3517d40c9f929b451cbad0f903486c8d32673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1016/S1734-1140(09)70005-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1016/S1734-1140(09)70005-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19307691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Daiber, Andreas</creatorcontrib><creatorcontrib>Oelze, Matthias</creatorcontrib><creatorcontrib>Wenzel, Philip</creatorcontrib><creatorcontrib>Dias Wickramanayake, Jennifer M.</creatorcontrib><creatorcontrib>Schuhmacher, Swenja</creatorcontrib><creatorcontrib>Jansen, Thomas</creatorcontrib><creatorcontrib>Lackner, Karl J.</creatorcontrib><creatorcontrib>Torzewski, Michael</creatorcontrib><creatorcontrib>Münzel, Thomas</creatorcontrib><title>Nitrate tolerance as a model of vascular dysfunction: Roles for mitochondrial aldehyde dehydrogenase and mitochondrial oxidative stress</title><title>Pharmacological reports</title><addtitle>Pharmacol. Rep</addtitle><addtitle>Pharmacol Rep</addtitle><description>Organic nitrates are a group of very effective anti-ischemic drugs. They are used for the treatment of patients with stable angina, acute myocardial infarction and chronic congestive heart failure. A major therapeutic limitation inherent to organic nitrates is the development of tolerance, which occurs during chronic treatment with these agents. The mechanisms underlying nitrate tolerance remain incompletely defined and are likely multifactorial. One mechanism seems to be a diminished bioconversion of nitroglycerin, another seems to be the induction of vascular oxidative stress, and a third may include neurohumoral adaptations. Recent studies have revealed that mitochondrial reactive oxygen species (ROS) formation and a subsequent oxidative inactivation of nitrate reductase, the mitochondrial aldehyde dehydrogenase (ALDH-2), play an important role in the development of nitrate and crosstolerance. The present review focus first on the role of oxidative stress and second on the role of ALDH-2 in organic nitrate bioactivation leading to the development of tolerance and cross-tolerance (endothelial dysfunction) in response to nitroglycerin treatment. Recently, the role of mitochondrial oxidative stress in the development of nitrate tolerance was demonstrated in a mouse model with a heterozygous deletion of manganese superoxide dismutase (MnSOD+/−), which is the mitochondrial isoform of this enzyme. Studies from our own laboratory have provided evidence for cross-talk between mitochondrial and cytosolic (Nox-dependent) sources of ROS. We close this review by focusing on the protective properties of the organic nitrate pentaerithrityl tetranitrate, which upregulates enzymes that have strong antioxidative activity, such as heme oxygenase-1 and ferritin, thereby preventing the development of tolerance and endothelial dysfunction.</description><subject>Aldehyde Dehydrogenase - metabolism</subject><subject>Aldehyde Dehydrogenase, Mitochondrial</subject><subject>Animals</subject><subject>Drug Safety and Pharmacovigilance</subject><subject>Drug Tolerance</subject><subject>Endothelium, Vascular - physiopathology</subject><subject>Heart Diseases - drug therapy</subject><subject>Heart Diseases - physiopathology</subject><subject>Humans</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - metabolism</subject><subject>mitochondrial aldehyde dehydrogenase</subject><subject>mitochondrial oxidative stress</subject><subject>Nitrates - administration &amp; dosage</subject><subject>Nitrates - pharmacology</subject><subject>Nitroglycerin - administration &amp; dosage</subject><subject>Nitroglycerin - pharmacology</subject><subject>organic nitrate</subject><subject>Oxidative Stress - drug effects</subject><subject>peroxynitrite</subject><subject>Pharmacotherapy</subject><subject>Pharmacy</subject><subject>Review</subject><subject>superoxide</subject><subject>vascular dysfunction</subject><issn>1734-1140</issn><issn>2299-5684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctuFDEQRS0EIkPgE0BeIVg0-NF2t9lEKOIlRSDxWFtuuzpx1N0OLveI-QJ-G2dmBBKbrGpR595S3UvIU85eccb162-8k23DecteMPOyY4ypRtwjGyGMaZTu2_tk8xc5IY8QrxlruZDqITnhRrJOG74hvz_Hkl0BWtIE2S0eqEPq6JwCTDSNdOvQr5PLNOxwXBdfYlre0K-VRjqmTOdYkr9KS8jRTdRNAa52Aeh-5HQJi8NquYT_wPQrBlfiFiiWDIiPyYPRTQhPjvOU_Hj_7vv5x-biy4dP528vGt92ujS9NDCIMHg2yJ4LNXRSywBCKeml4l1omTejEWZoFfeDC2w0TLa99n2QQnfylDw_-N7k9HMFLHaO6GGa3AJpRas7pvpe8gqqA-hzQsww2pscZ5d3ljN724DdN2Bv47XM2H0DVlTds-OBdZgh_FMdI6-APgBYV8slZHud1rzUp-90PjsIoeazjVWIPkJtLMQMvtiQ4h0OfwAGvajd</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Daiber, Andreas</creator><creator>Oelze, Matthias</creator><creator>Wenzel, Philip</creator><creator>Dias Wickramanayake, Jennifer M.</creator><creator>Schuhmacher, Swenja</creator><creator>Jansen, Thomas</creator><creator>Lackner, Karl J.</creator><creator>Torzewski, Michael</creator><creator>Münzel, Thomas</creator><general>Elsevier Urban &amp; Partner Sp. z o.o</general><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200901</creationdate><title>Nitrate tolerance as a model of vascular dysfunction: Roles for mitochondrial aldehyde dehydrogenase and mitochondrial oxidative stress</title><author>Daiber, Andreas ; Oelze, Matthias ; Wenzel, Philip ; Dias Wickramanayake, Jennifer M. ; Schuhmacher, Swenja ; Jansen, Thomas ; Lackner, Karl J. ; Torzewski, Michael ; Münzel, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-839eb2dbc0b38125b7363de2553c3517d40c9f929b451cbad0f903486c8d32673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aldehyde Dehydrogenase - metabolism</topic><topic>Aldehyde Dehydrogenase, Mitochondrial</topic><topic>Animals</topic><topic>Drug Safety and Pharmacovigilance</topic><topic>Drug Tolerance</topic><topic>Endothelium, Vascular - physiopathology</topic><topic>Heart Diseases - drug therapy</topic><topic>Heart Diseases - physiopathology</topic><topic>Humans</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - metabolism</topic><topic>mitochondrial aldehyde dehydrogenase</topic><topic>mitochondrial oxidative stress</topic><topic>Nitrates - administration &amp; dosage</topic><topic>Nitrates - pharmacology</topic><topic>Nitroglycerin - administration &amp; dosage</topic><topic>Nitroglycerin - pharmacology</topic><topic>organic nitrate</topic><topic>Oxidative Stress - drug effects</topic><topic>peroxynitrite</topic><topic>Pharmacotherapy</topic><topic>Pharmacy</topic><topic>Review</topic><topic>superoxide</topic><topic>vascular dysfunction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daiber, Andreas</creatorcontrib><creatorcontrib>Oelze, Matthias</creatorcontrib><creatorcontrib>Wenzel, Philip</creatorcontrib><creatorcontrib>Dias Wickramanayake, Jennifer M.</creatorcontrib><creatorcontrib>Schuhmacher, Swenja</creatorcontrib><creatorcontrib>Jansen, Thomas</creatorcontrib><creatorcontrib>Lackner, Karl J.</creatorcontrib><creatorcontrib>Torzewski, Michael</creatorcontrib><creatorcontrib>Münzel, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Pharmacological reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daiber, Andreas</au><au>Oelze, Matthias</au><au>Wenzel, Philip</au><au>Dias Wickramanayake, Jennifer M.</au><au>Schuhmacher, Swenja</au><au>Jansen, Thomas</au><au>Lackner, Karl J.</au><au>Torzewski, Michael</au><au>Münzel, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrate tolerance as a model of vascular dysfunction: Roles for mitochondrial aldehyde dehydrogenase and mitochondrial oxidative stress</atitle><jtitle>Pharmacological reports</jtitle><stitle>Pharmacol. Rep</stitle><addtitle>Pharmacol Rep</addtitle><date>2009-01</date><risdate>2009</risdate><volume>61</volume><issue>1</issue><spage>33</spage><epage>48</epage><pages>33-48</pages><issn>1734-1140</issn><eissn>2299-5684</eissn><abstract>Organic nitrates are a group of very effective anti-ischemic drugs. They are used for the treatment of patients with stable angina, acute myocardial infarction and chronic congestive heart failure. A major therapeutic limitation inherent to organic nitrates is the development of tolerance, which occurs during chronic treatment with these agents. The mechanisms underlying nitrate tolerance remain incompletely defined and are likely multifactorial. One mechanism seems to be a diminished bioconversion of nitroglycerin, another seems to be the induction of vascular oxidative stress, and a third may include neurohumoral adaptations. Recent studies have revealed that mitochondrial reactive oxygen species (ROS) formation and a subsequent oxidative inactivation of nitrate reductase, the mitochondrial aldehyde dehydrogenase (ALDH-2), play an important role in the development of nitrate and crosstolerance. The present review focus first on the role of oxidative stress and second on the role of ALDH-2 in organic nitrate bioactivation leading to the development of tolerance and cross-tolerance (endothelial dysfunction) in response to nitroglycerin treatment. Recently, the role of mitochondrial oxidative stress in the development of nitrate tolerance was demonstrated in a mouse model with a heterozygous deletion of manganese superoxide dismutase (MnSOD+/−), which is the mitochondrial isoform of this enzyme. Studies from our own laboratory have provided evidence for cross-talk between mitochondrial and cytosolic (Nox-dependent) sources of ROS. We close this review by focusing on the protective properties of the organic nitrate pentaerithrityl tetranitrate, which upregulates enzymes that have strong antioxidative activity, such as heme oxygenase-1 and ferritin, thereby preventing the development of tolerance and endothelial dysfunction.</abstract><cop>Cham</cop><pub>Elsevier Urban &amp; Partner Sp. z o.o</pub><pmid>19307691</pmid><doi>10.1016/S1734-1140(09)70005-2</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1734-1140
ispartof Pharmacological reports, 2009-01, Vol.61 (1), p.33-48
issn 1734-1140
2299-5684
language eng
recordid cdi_proquest_miscellaneous_67058831
source MEDLINE; Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Aldehyde Dehydrogenase - metabolism
Aldehyde Dehydrogenase, Mitochondrial
Animals
Drug Safety and Pharmacovigilance
Drug Tolerance
Endothelium, Vascular - physiopathology
Heart Diseases - drug therapy
Heart Diseases - physiopathology
Humans
Mitochondria - enzymology
Mitochondria - metabolism
mitochondrial aldehyde dehydrogenase
mitochondrial oxidative stress
Nitrates - administration & dosage
Nitrates - pharmacology
Nitroglycerin - administration & dosage
Nitroglycerin - pharmacology
organic nitrate
Oxidative Stress - drug effects
peroxynitrite
Pharmacotherapy
Pharmacy
Review
superoxide
vascular dysfunction
title Nitrate tolerance as a model of vascular dysfunction: Roles for mitochondrial aldehyde dehydrogenase and mitochondrial oxidative stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrate%20tolerance%20as%20a%20model%20of%20vascular%20dysfunction:%20Roles%20for%20mitochondrial%20aldehyde%20dehydrogenase%20and%20mitochondrial%20oxidative%20stress&rft.jtitle=Pharmacological%20reports&rft.au=Daiber,%20Andreas&rft.date=2009-01&rft.volume=61&rft.issue=1&rft.spage=33&rft.epage=48&rft.pages=33-48&rft.issn=1734-1140&rft.eissn=2299-5684&rft_id=info:doi/10.1016/S1734-1140(09)70005-2&rft_dat=%3Cproquest_cross%3E67058831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67058831&rft_id=info:pmid/19307691&rft_els_id=S1734114009700052&rfr_iscdi=true