comparison of electrically evoked and channel rhodopsin-evoked postsynaptic potentials in the pharyngeal system of Caenorhabditis elegans
Dissecting the function of neural circuits requires the capability to stimulate and record from the component neurones. Optimally, the methods employed should enable precise activation of distinct elements within the circuit and high-fidelity readout of the neuronal response. Here we compare two met...
Gespeichert in:
Veröffentlicht in: | Invertebrate neuroscience 2009-03, Vol.9 (1), p.43-56 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 1 |
container_start_page | 43 |
container_title | Invertebrate neuroscience |
container_volume | 9 |
creator | Franks, Christopher J Murray, Caitriona Ogden, David O'Connor, Vincent Holden-Dye, Lindy |
description | Dissecting the function of neural circuits requires the capability to stimulate and record from the component neurones. Optimally, the methods employed should enable precise activation of distinct elements within the circuit and high-fidelity readout of the neuronal response. Here we compare two methods for neural stimulation in the pharyngeal system of Caenorhabditis elegans by evoking postsynaptic potentials (PSPs) either by electrical stimulation or by expression of the channelrhodopsin [ChR2(gf)] in cholinergic neurones of the pharyngeal circuit. Using a dissection that isolates the pharynx and its embedded neural system of 20 neurones permits analysis of the neurotransmitter pathways within this microcircuit. We describe protocols for selective electrically evoked or ChR2-mediated cholinergic synaptic events in this circuit. The latter was achieved by generating strains, punc-17::ChR2(gf);yfp, that express ChR2(gf) in cholinergic neurones. PSPs evoked by both electrical and light stimulation exhibited a rapid time-course and were blocked by cholinergic receptor antagonists and rapidly reversed on cessation of the stimulus. Electrically evoked PSPs were also reduced in a hypomorphic mutant for the synaptic vesicle acetylcholine transporter, unc-17, further indicating they are nicotinic cholinergic PSPs. The pharyngeal nervous system is exquisitely sensitive to both electrical and light activation. For the latter, short light pulses of 200 μs delivered to punc-17::ChR2(gf);yfp are capable of generating full muscle action potentials. We conclude that the application of optogenetic approaches to the C. elegans isolated pharynx preparation opens the way for a precise molecular dissection of synaptic events in the pharyngeal microcircuit by providing a molecular and system level analysis of the synapses that control the feeding behaviour of C. elegans. |
doi_str_mv | 10.1007/s10158-009-0088-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67050424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67050424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-b3d2b227d1318f9363bdeb74c8eb07eab93e36a975371d1f1bd4ab47d5c9b40e3</originalsourceid><addsrcrecordid>eNp9kc2OFCEUhStG44yjD-BGiQt3pdyCKoql6fiXTOJCZ034udXFWA0l0Cb9CL61dKqTSVy4IHBzv3MucJrmJdB3QKl4n4FCP7aUyrrGsR0fNdfAmWwBKH9cz6znbdfDcNU8y_meUhDDyJ42VyA7ySt43fyx8bDq5HMMJE4EF7QleauX5UTwd_yJjujgiJ11CLiQNEcX1-xDe2muMZd8Cnot3taiYCheL5n4QMqMZJ11OoU96oXkUy54OA_ZaQwxzdo4X3w-z9zrkJ83T6aqxBeX_aa5-_Txx-5Le_vt89fdh9vW8l6W1jDXma4TDhiMk2QDMw6N4HZEQwVqIxmyQUvRMwEOJjCOa8OF6600nCK7ad5uvmuKv46Yizr4bHFZdMB4zGoQtKe84xV88w94H48p1LupjjGQtAdWIdggm2LOCSe1Jn-oj1ZA1TkktYWkakjqHJIaq-bVxfhoDugeFJdUKtBtQK6t-nvpYfL_XF9voklHpfc1UnX3vaPAKAwAgjH2F-LrqWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>233190513</pqid></control><display><type>article</type><title>comparison of electrically evoked and channel rhodopsin-evoked postsynaptic potentials in the pharyngeal system of Caenorhabditis elegans</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Franks, Christopher J ; Murray, Caitriona ; Ogden, David ; O'Connor, Vincent ; Holden-Dye, Lindy</creator><creatorcontrib>Franks, Christopher J ; Murray, Caitriona ; Ogden, David ; O'Connor, Vincent ; Holden-Dye, Lindy</creatorcontrib><description>Dissecting the function of neural circuits requires the capability to stimulate and record from the component neurones. Optimally, the methods employed should enable precise activation of distinct elements within the circuit and high-fidelity readout of the neuronal response. Here we compare two methods for neural stimulation in the pharyngeal system of Caenorhabditis elegans by evoking postsynaptic potentials (PSPs) either by electrical stimulation or by expression of the channelrhodopsin [ChR2(gf)] in cholinergic neurones of the pharyngeal circuit. Using a dissection that isolates the pharynx and its embedded neural system of 20 neurones permits analysis of the neurotransmitter pathways within this microcircuit. We describe protocols for selective electrically evoked or ChR2-mediated cholinergic synaptic events in this circuit. The latter was achieved by generating strains, punc-17::ChR2(gf);yfp, that express ChR2(gf) in cholinergic neurones. PSPs evoked by both electrical and light stimulation exhibited a rapid time-course and were blocked by cholinergic receptor antagonists and rapidly reversed on cessation of the stimulus. Electrically evoked PSPs were also reduced in a hypomorphic mutant for the synaptic vesicle acetylcholine transporter, unc-17, further indicating they are nicotinic cholinergic PSPs. The pharyngeal nervous system is exquisitely sensitive to both electrical and light activation. For the latter, short light pulses of 200 μs delivered to punc-17::ChR2(gf);yfp are capable of generating full muscle action potentials. We conclude that the application of optogenetic approaches to the C. elegans isolated pharynx preparation opens the way for a precise molecular dissection of synaptic events in the pharyngeal microcircuit by providing a molecular and system level analysis of the synapses that control the feeding behaviour of C. elegans.</description><identifier>ISSN: 1354-2516</identifier><identifier>EISSN: 1439-1104</identifier><identifier>DOI: 10.1007/s10158-009-0088-8</identifier><identifier>PMID: 19294439</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Action Potentials ; Animals ; Animals, Genetically Modified ; Biomedical and Life Sciences ; Biomedicine ; Caenorhabditis elegans - physiology ; Caenorhabditis elegans Proteins - genetics ; Calcium - metabolism ; Cell Biology ; Choline - metabolism ; Electric Stimulation ; Evoked Potentials ; Feeding behavior ; Invertebrates ; Molecular Medicine ; Mutation ; Neurobiology ; Neurosciences ; Pharyngeal Muscles - innervation ; Pharyngeal Muscles - physiology ; Pharynx - innervation ; Photic Stimulation ; Rhodopsin - genetics ; Rhodopsin - metabolism ; Synapses - physiology ; Synaptic Potentials - physiology ; Time ; Vesicular Acetylcholine Transport Proteins - genetics</subject><ispartof>Invertebrate neuroscience, 2009-03, Vol.9 (1), p.43-56</ispartof><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-b3d2b227d1318f9363bdeb74c8eb07eab93e36a975371d1f1bd4ab47d5c9b40e3</citedby><cites>FETCH-LOGICAL-c459t-b3d2b227d1318f9363bdeb74c8eb07eab93e36a975371d1f1bd4ab47d5c9b40e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10158-009-0088-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10158-009-0088-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19294439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Franks, Christopher J</creatorcontrib><creatorcontrib>Murray, Caitriona</creatorcontrib><creatorcontrib>Ogden, David</creatorcontrib><creatorcontrib>O'Connor, Vincent</creatorcontrib><creatorcontrib>Holden-Dye, Lindy</creatorcontrib><title>comparison of electrically evoked and channel rhodopsin-evoked postsynaptic potentials in the pharyngeal system of Caenorhabditis elegans</title><title>Invertebrate neuroscience</title><addtitle>Invert Neurosci</addtitle><addtitle>Invert Neurosci</addtitle><description>Dissecting the function of neural circuits requires the capability to stimulate and record from the component neurones. Optimally, the methods employed should enable precise activation of distinct elements within the circuit and high-fidelity readout of the neuronal response. Here we compare two methods for neural stimulation in the pharyngeal system of Caenorhabditis elegans by evoking postsynaptic potentials (PSPs) either by electrical stimulation or by expression of the channelrhodopsin [ChR2(gf)] in cholinergic neurones of the pharyngeal circuit. Using a dissection that isolates the pharynx and its embedded neural system of 20 neurones permits analysis of the neurotransmitter pathways within this microcircuit. We describe protocols for selective electrically evoked or ChR2-mediated cholinergic synaptic events in this circuit. The latter was achieved by generating strains, punc-17::ChR2(gf);yfp, that express ChR2(gf) in cholinergic neurones. PSPs evoked by both electrical and light stimulation exhibited a rapid time-course and were blocked by cholinergic receptor antagonists and rapidly reversed on cessation of the stimulus. Electrically evoked PSPs were also reduced in a hypomorphic mutant for the synaptic vesicle acetylcholine transporter, unc-17, further indicating they are nicotinic cholinergic PSPs. The pharyngeal nervous system is exquisitely sensitive to both electrical and light activation. For the latter, short light pulses of 200 μs delivered to punc-17::ChR2(gf);yfp are capable of generating full muscle action potentials. We conclude that the application of optogenetic approaches to the C. elegans isolated pharynx preparation opens the way for a precise molecular dissection of synaptic events in the pharyngeal microcircuit by providing a molecular and system level analysis of the synapses that control the feeding behaviour of C. elegans.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Calcium - metabolism</subject><subject>Cell Biology</subject><subject>Choline - metabolism</subject><subject>Electric Stimulation</subject><subject>Evoked Potentials</subject><subject>Feeding behavior</subject><subject>Invertebrates</subject><subject>Molecular Medicine</subject><subject>Mutation</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Pharyngeal Muscles - innervation</subject><subject>Pharyngeal Muscles - physiology</subject><subject>Pharynx - innervation</subject><subject>Photic Stimulation</subject><subject>Rhodopsin - genetics</subject><subject>Rhodopsin - metabolism</subject><subject>Synapses - physiology</subject><subject>Synaptic Potentials - physiology</subject><subject>Time</subject><subject>Vesicular Acetylcholine Transport Proteins - genetics</subject><issn>1354-2516</issn><issn>1439-1104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc2OFCEUhStG44yjD-BGiQt3pdyCKoql6fiXTOJCZ034udXFWA0l0Cb9CL61dKqTSVy4IHBzv3MucJrmJdB3QKl4n4FCP7aUyrrGsR0fNdfAmWwBKH9cz6znbdfDcNU8y_meUhDDyJ42VyA7ySt43fyx8bDq5HMMJE4EF7QleauX5UTwd_yJjujgiJ11CLiQNEcX1-xDe2muMZd8Cnot3taiYCheL5n4QMqMZJ11OoU96oXkUy54OA_ZaQwxzdo4X3w-z9zrkJ83T6aqxBeX_aa5-_Txx-5Le_vt89fdh9vW8l6W1jDXma4TDhiMk2QDMw6N4HZEQwVqIxmyQUvRMwEOJjCOa8OF6600nCK7ad5uvmuKv46Yizr4bHFZdMB4zGoQtKe84xV88w94H48p1LupjjGQtAdWIdggm2LOCSe1Jn-oj1ZA1TkktYWkakjqHJIaq-bVxfhoDugeFJdUKtBtQK6t-nvpYfL_XF9voklHpfc1UnX3vaPAKAwAgjH2F-LrqWw</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Franks, Christopher J</creator><creator>Murray, Caitriona</creator><creator>Ogden, David</creator><creator>O'Connor, Vincent</creator><creator>Holden-Dye, Lindy</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20090301</creationdate><title>comparison of electrically evoked and channel rhodopsin-evoked postsynaptic potentials in the pharyngeal system of Caenorhabditis elegans</title><author>Franks, Christopher J ; Murray, Caitriona ; Ogden, David ; O'Connor, Vincent ; Holden-Dye, Lindy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-b3d2b227d1318f9363bdeb74c8eb07eab93e36a975371d1f1bd4ab47d5c9b40e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Calcium - metabolism</topic><topic>Cell Biology</topic><topic>Choline - metabolism</topic><topic>Electric Stimulation</topic><topic>Evoked Potentials</topic><topic>Feeding behavior</topic><topic>Invertebrates</topic><topic>Molecular Medicine</topic><topic>Mutation</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Pharyngeal Muscles - innervation</topic><topic>Pharyngeal Muscles - physiology</topic><topic>Pharynx - innervation</topic><topic>Photic Stimulation</topic><topic>Rhodopsin - genetics</topic><topic>Rhodopsin - metabolism</topic><topic>Synapses - physiology</topic><topic>Synaptic Potentials - physiology</topic><topic>Time</topic><topic>Vesicular Acetylcholine Transport Proteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franks, Christopher J</creatorcontrib><creatorcontrib>Murray, Caitriona</creatorcontrib><creatorcontrib>Ogden, David</creatorcontrib><creatorcontrib>O'Connor, Vincent</creatorcontrib><creatorcontrib>Holden-Dye, Lindy</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Invertebrate neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franks, Christopher J</au><au>Murray, Caitriona</au><au>Ogden, David</au><au>O'Connor, Vincent</au><au>Holden-Dye, Lindy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>comparison of electrically evoked and channel rhodopsin-evoked postsynaptic potentials in the pharyngeal system of Caenorhabditis elegans</atitle><jtitle>Invertebrate neuroscience</jtitle><stitle>Invert Neurosci</stitle><addtitle>Invert Neurosci</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>9</volume><issue>1</issue><spage>43</spage><epage>56</epage><pages>43-56</pages><issn>1354-2516</issn><eissn>1439-1104</eissn><abstract>Dissecting the function of neural circuits requires the capability to stimulate and record from the component neurones. Optimally, the methods employed should enable precise activation of distinct elements within the circuit and high-fidelity readout of the neuronal response. Here we compare two methods for neural stimulation in the pharyngeal system of Caenorhabditis elegans by evoking postsynaptic potentials (PSPs) either by electrical stimulation or by expression of the channelrhodopsin [ChR2(gf)] in cholinergic neurones of the pharyngeal circuit. Using a dissection that isolates the pharynx and its embedded neural system of 20 neurones permits analysis of the neurotransmitter pathways within this microcircuit. We describe protocols for selective electrically evoked or ChR2-mediated cholinergic synaptic events in this circuit. The latter was achieved by generating strains, punc-17::ChR2(gf);yfp, that express ChR2(gf) in cholinergic neurones. PSPs evoked by both electrical and light stimulation exhibited a rapid time-course and were blocked by cholinergic receptor antagonists and rapidly reversed on cessation of the stimulus. Electrically evoked PSPs were also reduced in a hypomorphic mutant for the synaptic vesicle acetylcholine transporter, unc-17, further indicating they are nicotinic cholinergic PSPs. The pharyngeal nervous system is exquisitely sensitive to both electrical and light activation. For the latter, short light pulses of 200 μs delivered to punc-17::ChR2(gf);yfp are capable of generating full muscle action potentials. We conclude that the application of optogenetic approaches to the C. elegans isolated pharynx preparation opens the way for a precise molecular dissection of synaptic events in the pharyngeal microcircuit by providing a molecular and system level analysis of the synapses that control the feeding behaviour of C. elegans.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>19294439</pmid><doi>10.1007/s10158-009-0088-8</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-2516 |
ispartof | Invertebrate neuroscience, 2009-03, Vol.9 (1), p.43-56 |
issn | 1354-2516 1439-1104 |
language | eng |
recordid | cdi_proquest_miscellaneous_67050424 |
source | MEDLINE; SpringerLink Journals |
subjects | Action Potentials Animals Animals, Genetically Modified Biomedical and Life Sciences Biomedicine Caenorhabditis elegans - physiology Caenorhabditis elegans Proteins - genetics Calcium - metabolism Cell Biology Choline - metabolism Electric Stimulation Evoked Potentials Feeding behavior Invertebrates Molecular Medicine Mutation Neurobiology Neurosciences Pharyngeal Muscles - innervation Pharyngeal Muscles - physiology Pharynx - innervation Photic Stimulation Rhodopsin - genetics Rhodopsin - metabolism Synapses - physiology Synaptic Potentials - physiology Time Vesicular Acetylcholine Transport Proteins - genetics |
title | comparison of electrically evoked and channel rhodopsin-evoked postsynaptic potentials in the pharyngeal system of Caenorhabditis elegans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=comparison%20of%20electrically%20evoked%20and%20channel%20rhodopsin-evoked%20postsynaptic%20potentials%20in%20the%20pharyngeal%20system%20of%20Caenorhabditis%20elegans&rft.jtitle=Invertebrate%20neuroscience&rft.au=Franks,%20Christopher%20J&rft.date=2009-03-01&rft.volume=9&rft.issue=1&rft.spage=43&rft.epage=56&rft.pages=43-56&rft.issn=1354-2516&rft.eissn=1439-1104&rft_id=info:doi/10.1007/s10158-009-0088-8&rft_dat=%3Cproquest_cross%3E67050424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=233190513&rft_id=info:pmid/19294439&rfr_iscdi=true |