Defining and measuring physicians’ responses to clinical reminders

Decision-support systems, and specifically rule-based clinical reminders, are becoming common in medical practice. Despite their potential to improve clinical outcomes, physicians do not always use information from these systems. Concepts from the cognitive engineering literature on users’ responses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical informatics 2009-04, Vol.42 (2), p.317-326
Hauptverfasser: Vashitz, Geva, Meyer, Joachim, Parmet, Yisrael, Peleg, Roni, Goldfarb, Dan, Porath, Avi, Gilutz, Harel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 326
container_issue 2
container_start_page 317
container_title Journal of biomedical informatics
container_volume 42
creator Vashitz, Geva
Meyer, Joachim
Parmet, Yisrael
Peleg, Roni
Goldfarb, Dan
Porath, Avi
Gilutz, Harel
description Decision-support systems, and specifically rule-based clinical reminders, are becoming common in medical practice. Despite their potential to improve clinical outcomes, physicians do not always use information from these systems. Concepts from the cognitive engineering literature on users’ responses to warning systems may help to define physicians’ responses to reminders. Based on this literature, we suggest an exhaustive set of possible responses to clinical reminders, consisting of four responses named “Compliance”, “Reliance”, “Spillover” and “Reactance”. We suggest statistical measures to estimate these responses and empirically demonstrate them on data from a large-scale clinical reminder system for secondary prevention of cardiovascular diseases. There was evidence for Compliance, probably since the physicians found the reminders informative, but not for Reliance, in line with the notion that Compliance and Reliance are two distinct types of trust in information from decision-support systems. Our research supports the notion that CDSS can promote closing the treatment gap and improve physicians’ adherence to guidelines.
doi_str_mv 10.1016/j.jbi.2008.10.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67048990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1532046408001305</els_id><sourcerecordid>67048990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-39bee9fec82844893fe9bc713929e324c413385bf6d6dc81d64a145cfccf842c3</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMozjj6AG6kK3etSZNmGlzJjDcQ3Og6tKenmtKbSSvMztfw9XwSU2bQna6Sc_j-H85HyCmjEaNMXlRRlZsopjT1c0Qp2yNzlvA4pCKl-z9_KWbkyLnKAyxJ5CGZMUUpVTyZk_UaS9Oa9iXI2iJoMHOjnab-deMMmKx1Xx-fgUXXd61DFwxdALUPQFb7bWPaAq07JgdlVjs82b0L8nxz_bS6Cx8eb-9XVw8hiDgZQq5yRFUipHEqRKp4iSqHJeMqVshjAYJxniZ5KQtZQMoKKTImEigBylTEwBfkfNvb2-5tRDfoxjjAus5a7Ean5dIfrhT9F4yp4EpK6UG2BcF2zlksdW9Nk9mNZlRPjnWlvWM9OZ5WXqHPnO3Kx7zB4jexk-qByy2A3sW7QasdGGwBC2MRBl105o_6b3uWjVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20439666</pqid></control><display><type>article</type><title>Defining and measuring physicians’ responses to clinical reminders</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Vashitz, Geva ; Meyer, Joachim ; Parmet, Yisrael ; Peleg, Roni ; Goldfarb, Dan ; Porath, Avi ; Gilutz, Harel</creator><creatorcontrib>Vashitz, Geva ; Meyer, Joachim ; Parmet, Yisrael ; Peleg, Roni ; Goldfarb, Dan ; Porath, Avi ; Gilutz, Harel</creatorcontrib><description>Decision-support systems, and specifically rule-based clinical reminders, are becoming common in medical practice. Despite their potential to improve clinical outcomes, physicians do not always use information from these systems. Concepts from the cognitive engineering literature on users’ responses to warning systems may help to define physicians’ responses to reminders. Based on this literature, we suggest an exhaustive set of possible responses to clinical reminders, consisting of four responses named “Compliance”, “Reliance”, “Spillover” and “Reactance”. We suggest statistical measures to estimate these responses and empirically demonstrate them on data from a large-scale clinical reminder system for secondary prevention of cardiovascular diseases. There was evidence for Compliance, probably since the physicians found the reminders informative, but not for Reliance, in line with the notion that Compliance and Reliance are two distinct types of trust in information from decision-support systems. Our research supports the notion that CDSS can promote closing the treatment gap and improve physicians’ adherence to guidelines.</description><identifier>ISSN: 1532-0464</identifier><identifier>EISSN: 1532-0480</identifier><identifier>DOI: 10.1016/j.jbi.2008.10.001</identifier><identifier>PMID: 19000935</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Attitude of Health Personnel ; Cholesterol ; Cognitive engineering ; Compliance ; Data Interpretation, Statistical ; Decision aids ; Decision Support Systems, Clinical ; Dyslipidemia ; Guidelines ; Health Knowledge, Attitudes, Practice ; Humans ; Medical decision support systems ; Physicians - psychology ; Professional Practice ; Reactance ; Reliance ; Reminder Systems ; Spillover ; Treatment gap</subject><ispartof>Journal of biomedical informatics, 2009-04, Vol.42 (2), p.317-326</ispartof><rights>2008 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-39bee9fec82844893fe9bc713929e324c413385bf6d6dc81d64a145cfccf842c3</citedby><cites>FETCH-LOGICAL-c425t-39bee9fec82844893fe9bc713929e324c413385bf6d6dc81d64a145cfccf842c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jbi.2008.10.001$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19000935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vashitz, Geva</creatorcontrib><creatorcontrib>Meyer, Joachim</creatorcontrib><creatorcontrib>Parmet, Yisrael</creatorcontrib><creatorcontrib>Peleg, Roni</creatorcontrib><creatorcontrib>Goldfarb, Dan</creatorcontrib><creatorcontrib>Porath, Avi</creatorcontrib><creatorcontrib>Gilutz, Harel</creatorcontrib><title>Defining and measuring physicians’ responses to clinical reminders</title><title>Journal of biomedical informatics</title><addtitle>J Biomed Inform</addtitle><description>Decision-support systems, and specifically rule-based clinical reminders, are becoming common in medical practice. Despite their potential to improve clinical outcomes, physicians do not always use information from these systems. Concepts from the cognitive engineering literature on users’ responses to warning systems may help to define physicians’ responses to reminders. Based on this literature, we suggest an exhaustive set of possible responses to clinical reminders, consisting of four responses named “Compliance”, “Reliance”, “Spillover” and “Reactance”. We suggest statistical measures to estimate these responses and empirically demonstrate them on data from a large-scale clinical reminder system for secondary prevention of cardiovascular diseases. There was evidence for Compliance, probably since the physicians found the reminders informative, but not for Reliance, in line with the notion that Compliance and Reliance are two distinct types of trust in information from decision-support systems. Our research supports the notion that CDSS can promote closing the treatment gap and improve physicians’ adherence to guidelines.</description><subject>Attitude of Health Personnel</subject><subject>Cholesterol</subject><subject>Cognitive engineering</subject><subject>Compliance</subject><subject>Data Interpretation, Statistical</subject><subject>Decision aids</subject><subject>Decision Support Systems, Clinical</subject><subject>Dyslipidemia</subject><subject>Guidelines</subject><subject>Health Knowledge, Attitudes, Practice</subject><subject>Humans</subject><subject>Medical decision support systems</subject><subject>Physicians - psychology</subject><subject>Professional Practice</subject><subject>Reactance</subject><subject>Reliance</subject><subject>Reminder Systems</subject><subject>Spillover</subject><subject>Treatment gap</subject><issn>1532-0464</issn><issn>1532-0480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtKxDAUhoMozjj6AG6kK3etSZNmGlzJjDcQ3Og6tKenmtKbSSvMztfw9XwSU2bQna6Sc_j-H85HyCmjEaNMXlRRlZsopjT1c0Qp2yNzlvA4pCKl-z9_KWbkyLnKAyxJ5CGZMUUpVTyZk_UaS9Oa9iXI2iJoMHOjnab-deMMmKx1Xx-fgUXXd61DFwxdALUPQFb7bWPaAq07JgdlVjs82b0L8nxz_bS6Cx8eb-9XVw8hiDgZQq5yRFUipHEqRKp4iSqHJeMqVshjAYJxniZ5KQtZQMoKKTImEigBylTEwBfkfNvb2-5tRDfoxjjAus5a7Ean5dIfrhT9F4yp4EpK6UG2BcF2zlksdW9Nk9mNZlRPjnWlvWM9OZ5WXqHPnO3Kx7zB4jexk-qByy2A3sW7QasdGGwBC2MRBl105o_6b3uWjVg</recordid><startdate>200904</startdate><enddate>200904</enddate><creator>Vashitz, Geva</creator><creator>Meyer, Joachim</creator><creator>Parmet, Yisrael</creator><creator>Peleg, Roni</creator><creator>Goldfarb, Dan</creator><creator>Porath, Avi</creator><creator>Gilutz, Harel</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200904</creationdate><title>Defining and measuring physicians’ responses to clinical reminders</title><author>Vashitz, Geva ; Meyer, Joachim ; Parmet, Yisrael ; Peleg, Roni ; Goldfarb, Dan ; Porath, Avi ; Gilutz, Harel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-39bee9fec82844893fe9bc713929e324c413385bf6d6dc81d64a145cfccf842c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Attitude of Health Personnel</topic><topic>Cholesterol</topic><topic>Cognitive engineering</topic><topic>Compliance</topic><topic>Data Interpretation, Statistical</topic><topic>Decision aids</topic><topic>Decision Support Systems, Clinical</topic><topic>Dyslipidemia</topic><topic>Guidelines</topic><topic>Health Knowledge, Attitudes, Practice</topic><topic>Humans</topic><topic>Medical decision support systems</topic><topic>Physicians - psychology</topic><topic>Professional Practice</topic><topic>Reactance</topic><topic>Reliance</topic><topic>Reminder Systems</topic><topic>Spillover</topic><topic>Treatment gap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vashitz, Geva</creatorcontrib><creatorcontrib>Meyer, Joachim</creatorcontrib><creatorcontrib>Parmet, Yisrael</creatorcontrib><creatorcontrib>Peleg, Roni</creatorcontrib><creatorcontrib>Goldfarb, Dan</creatorcontrib><creatorcontrib>Porath, Avi</creatorcontrib><creatorcontrib>Gilutz, Harel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vashitz, Geva</au><au>Meyer, Joachim</au><au>Parmet, Yisrael</au><au>Peleg, Roni</au><au>Goldfarb, Dan</au><au>Porath, Avi</au><au>Gilutz, Harel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining and measuring physicians’ responses to clinical reminders</atitle><jtitle>Journal of biomedical informatics</jtitle><addtitle>J Biomed Inform</addtitle><date>2009-04</date><risdate>2009</risdate><volume>42</volume><issue>2</issue><spage>317</spage><epage>326</epage><pages>317-326</pages><issn>1532-0464</issn><eissn>1532-0480</eissn><abstract>Decision-support systems, and specifically rule-based clinical reminders, are becoming common in medical practice. Despite their potential to improve clinical outcomes, physicians do not always use information from these systems. Concepts from the cognitive engineering literature on users’ responses to warning systems may help to define physicians’ responses to reminders. Based on this literature, we suggest an exhaustive set of possible responses to clinical reminders, consisting of four responses named “Compliance”, “Reliance”, “Spillover” and “Reactance”. We suggest statistical measures to estimate these responses and empirically demonstrate them on data from a large-scale clinical reminder system for secondary prevention of cardiovascular diseases. There was evidence for Compliance, probably since the physicians found the reminders informative, but not for Reliance, in line with the notion that Compliance and Reliance are two distinct types of trust in information from decision-support systems. Our research supports the notion that CDSS can promote closing the treatment gap and improve physicians’ adherence to guidelines.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19000935</pmid><doi>10.1016/j.jbi.2008.10.001</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1532-0464
ispartof Journal of biomedical informatics, 2009-04, Vol.42 (2), p.317-326
issn 1532-0464
1532-0480
language eng
recordid cdi_proquest_miscellaneous_67048990
source MEDLINE; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Attitude of Health Personnel
Cholesterol
Cognitive engineering
Compliance
Data Interpretation, Statistical
Decision aids
Decision Support Systems, Clinical
Dyslipidemia
Guidelines
Health Knowledge, Attitudes, Practice
Humans
Medical decision support systems
Physicians - psychology
Professional Practice
Reactance
Reliance
Reminder Systems
Spillover
Treatment gap
title Defining and measuring physicians’ responses to clinical reminders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20and%20measuring%20physicians%E2%80%99%20responses%20to%20clinical%20reminders&rft.jtitle=Journal%20of%20biomedical%20informatics&rft.au=Vashitz,%20Geva&rft.date=2009-04&rft.volume=42&rft.issue=2&rft.spage=317&rft.epage=326&rft.pages=317-326&rft.issn=1532-0464&rft.eissn=1532-0480&rft_id=info:doi/10.1016/j.jbi.2008.10.001&rft_dat=%3Cproquest_cross%3E67048990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20439666&rft_id=info:pmid/19000935&rft_els_id=S1532046408001305&rfr_iscdi=true