Defining and measuring physicians’ responses to clinical reminders
Decision-support systems, and specifically rule-based clinical reminders, are becoming common in medical practice. Despite their potential to improve clinical outcomes, physicians do not always use information from these systems. Concepts from the cognitive engineering literature on users’ responses...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical informatics 2009-04, Vol.42 (2), p.317-326 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 326 |
---|---|
container_issue | 2 |
container_start_page | 317 |
container_title | Journal of biomedical informatics |
container_volume | 42 |
creator | Vashitz, Geva Meyer, Joachim Parmet, Yisrael Peleg, Roni Goldfarb, Dan Porath, Avi Gilutz, Harel |
description | Decision-support systems, and specifically rule-based clinical reminders, are becoming common in medical practice. Despite their potential to improve clinical outcomes, physicians do not always use information from these systems. Concepts from the cognitive engineering literature on users’ responses to warning systems may help to define physicians’ responses to reminders. Based on this literature, we suggest an exhaustive set of possible responses to clinical reminders, consisting of four responses named “Compliance”, “Reliance”, “Spillover” and “Reactance”. We suggest statistical measures to estimate these responses and empirically demonstrate them on data from a large-scale clinical reminder system for secondary prevention of cardiovascular diseases. There was evidence for Compliance, probably since the physicians found the reminders informative, but not for Reliance, in line with the notion that Compliance and Reliance are two distinct types of trust in information from decision-support systems. Our research supports the notion that CDSS can promote closing the treatment gap and improve physicians’ adherence to guidelines. |
doi_str_mv | 10.1016/j.jbi.2008.10.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67048990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1532046408001305</els_id><sourcerecordid>67048990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-39bee9fec82844893fe9bc713929e324c413385bf6d6dc81d64a145cfccf842c3</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMozjj6AG6kK3etSZNmGlzJjDcQ3Og6tKenmtKbSSvMztfw9XwSU2bQna6Sc_j-H85HyCmjEaNMXlRRlZsopjT1c0Qp2yNzlvA4pCKl-z9_KWbkyLnKAyxJ5CGZMUUpVTyZk_UaS9Oa9iXI2iJoMHOjnab-deMMmKx1Xx-fgUXXd61DFwxdALUPQFb7bWPaAq07JgdlVjs82b0L8nxz_bS6Cx8eb-9XVw8hiDgZQq5yRFUipHEqRKp4iSqHJeMqVshjAYJxniZ5KQtZQMoKKTImEigBylTEwBfkfNvb2-5tRDfoxjjAus5a7Ean5dIfrhT9F4yp4EpK6UG2BcF2zlksdW9Nk9mNZlRPjnWlvWM9OZ5WXqHPnO3Kx7zB4jexk-qByy2A3sW7QasdGGwBC2MRBl105o_6b3uWjVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20439666</pqid></control><display><type>article</type><title>Defining and measuring physicians’ responses to clinical reminders</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Vashitz, Geva ; Meyer, Joachim ; Parmet, Yisrael ; Peleg, Roni ; Goldfarb, Dan ; Porath, Avi ; Gilutz, Harel</creator><creatorcontrib>Vashitz, Geva ; Meyer, Joachim ; Parmet, Yisrael ; Peleg, Roni ; Goldfarb, Dan ; Porath, Avi ; Gilutz, Harel</creatorcontrib><description>Decision-support systems, and specifically rule-based clinical reminders, are becoming common in medical practice. Despite their potential to improve clinical outcomes, physicians do not always use information from these systems. Concepts from the cognitive engineering literature on users’ responses to warning systems may help to define physicians’ responses to reminders. Based on this literature, we suggest an exhaustive set of possible responses to clinical reminders, consisting of four responses named “Compliance”, “Reliance”, “Spillover” and “Reactance”. We suggest statistical measures to estimate these responses and empirically demonstrate them on data from a large-scale clinical reminder system for secondary prevention of cardiovascular diseases. There was evidence for Compliance, probably since the physicians found the reminders informative, but not for Reliance, in line with the notion that Compliance and Reliance are two distinct types of trust in information from decision-support systems. Our research supports the notion that CDSS can promote closing the treatment gap and improve physicians’ adherence to guidelines.</description><identifier>ISSN: 1532-0464</identifier><identifier>EISSN: 1532-0480</identifier><identifier>DOI: 10.1016/j.jbi.2008.10.001</identifier><identifier>PMID: 19000935</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Attitude of Health Personnel ; Cholesterol ; Cognitive engineering ; Compliance ; Data Interpretation, Statistical ; Decision aids ; Decision Support Systems, Clinical ; Dyslipidemia ; Guidelines ; Health Knowledge, Attitudes, Practice ; Humans ; Medical decision support systems ; Physicians - psychology ; Professional Practice ; Reactance ; Reliance ; Reminder Systems ; Spillover ; Treatment gap</subject><ispartof>Journal of biomedical informatics, 2009-04, Vol.42 (2), p.317-326</ispartof><rights>2008 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-39bee9fec82844893fe9bc713929e324c413385bf6d6dc81d64a145cfccf842c3</citedby><cites>FETCH-LOGICAL-c425t-39bee9fec82844893fe9bc713929e324c413385bf6d6dc81d64a145cfccf842c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jbi.2008.10.001$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19000935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vashitz, Geva</creatorcontrib><creatorcontrib>Meyer, Joachim</creatorcontrib><creatorcontrib>Parmet, Yisrael</creatorcontrib><creatorcontrib>Peleg, Roni</creatorcontrib><creatorcontrib>Goldfarb, Dan</creatorcontrib><creatorcontrib>Porath, Avi</creatorcontrib><creatorcontrib>Gilutz, Harel</creatorcontrib><title>Defining and measuring physicians’ responses to clinical reminders</title><title>Journal of biomedical informatics</title><addtitle>J Biomed Inform</addtitle><description>Decision-support systems, and specifically rule-based clinical reminders, are becoming common in medical practice. Despite their potential to improve clinical outcomes, physicians do not always use information from these systems. Concepts from the cognitive engineering literature on users’ responses to warning systems may help to define physicians’ responses to reminders. Based on this literature, we suggest an exhaustive set of possible responses to clinical reminders, consisting of four responses named “Compliance”, “Reliance”, “Spillover” and “Reactance”. We suggest statistical measures to estimate these responses and empirically demonstrate them on data from a large-scale clinical reminder system for secondary prevention of cardiovascular diseases. There was evidence for Compliance, probably since the physicians found the reminders informative, but not for Reliance, in line with the notion that Compliance and Reliance are two distinct types of trust in information from decision-support systems. Our research supports the notion that CDSS can promote closing the treatment gap and improve physicians’ adherence to guidelines.</description><subject>Attitude of Health Personnel</subject><subject>Cholesterol</subject><subject>Cognitive engineering</subject><subject>Compliance</subject><subject>Data Interpretation, Statistical</subject><subject>Decision aids</subject><subject>Decision Support Systems, Clinical</subject><subject>Dyslipidemia</subject><subject>Guidelines</subject><subject>Health Knowledge, Attitudes, Practice</subject><subject>Humans</subject><subject>Medical decision support systems</subject><subject>Physicians - psychology</subject><subject>Professional Practice</subject><subject>Reactance</subject><subject>Reliance</subject><subject>Reminder Systems</subject><subject>Spillover</subject><subject>Treatment gap</subject><issn>1532-0464</issn><issn>1532-0480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtKxDAUhoMozjj6AG6kK3etSZNmGlzJjDcQ3Og6tKenmtKbSSvMztfw9XwSU2bQna6Sc_j-H85HyCmjEaNMXlRRlZsopjT1c0Qp2yNzlvA4pCKl-z9_KWbkyLnKAyxJ5CGZMUUpVTyZk_UaS9Oa9iXI2iJoMHOjnab-deMMmKx1Xx-fgUXXd61DFwxdALUPQFb7bWPaAq07JgdlVjs82b0L8nxz_bS6Cx8eb-9XVw8hiDgZQq5yRFUipHEqRKp4iSqHJeMqVshjAYJxniZ5KQtZQMoKKTImEigBylTEwBfkfNvb2-5tRDfoxjjAus5a7Ean5dIfrhT9F4yp4EpK6UG2BcF2zlksdW9Nk9mNZlRPjnWlvWM9OZ5WXqHPnO3Kx7zB4jexk-qByy2A3sW7QasdGGwBC2MRBl105o_6b3uWjVg</recordid><startdate>200904</startdate><enddate>200904</enddate><creator>Vashitz, Geva</creator><creator>Meyer, Joachim</creator><creator>Parmet, Yisrael</creator><creator>Peleg, Roni</creator><creator>Goldfarb, Dan</creator><creator>Porath, Avi</creator><creator>Gilutz, Harel</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200904</creationdate><title>Defining and measuring physicians’ responses to clinical reminders</title><author>Vashitz, Geva ; Meyer, Joachim ; Parmet, Yisrael ; Peleg, Roni ; Goldfarb, Dan ; Porath, Avi ; Gilutz, Harel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-39bee9fec82844893fe9bc713929e324c413385bf6d6dc81d64a145cfccf842c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Attitude of Health Personnel</topic><topic>Cholesterol</topic><topic>Cognitive engineering</topic><topic>Compliance</topic><topic>Data Interpretation, Statistical</topic><topic>Decision aids</topic><topic>Decision Support Systems, Clinical</topic><topic>Dyslipidemia</topic><topic>Guidelines</topic><topic>Health Knowledge, Attitudes, Practice</topic><topic>Humans</topic><topic>Medical decision support systems</topic><topic>Physicians - psychology</topic><topic>Professional Practice</topic><topic>Reactance</topic><topic>Reliance</topic><topic>Reminder Systems</topic><topic>Spillover</topic><topic>Treatment gap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vashitz, Geva</creatorcontrib><creatorcontrib>Meyer, Joachim</creatorcontrib><creatorcontrib>Parmet, Yisrael</creatorcontrib><creatorcontrib>Peleg, Roni</creatorcontrib><creatorcontrib>Goldfarb, Dan</creatorcontrib><creatorcontrib>Porath, Avi</creatorcontrib><creatorcontrib>Gilutz, Harel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vashitz, Geva</au><au>Meyer, Joachim</au><au>Parmet, Yisrael</au><au>Peleg, Roni</au><au>Goldfarb, Dan</au><au>Porath, Avi</au><au>Gilutz, Harel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining and measuring physicians’ responses to clinical reminders</atitle><jtitle>Journal of biomedical informatics</jtitle><addtitle>J Biomed Inform</addtitle><date>2009-04</date><risdate>2009</risdate><volume>42</volume><issue>2</issue><spage>317</spage><epage>326</epage><pages>317-326</pages><issn>1532-0464</issn><eissn>1532-0480</eissn><abstract>Decision-support systems, and specifically rule-based clinical reminders, are becoming common in medical practice. Despite their potential to improve clinical outcomes, physicians do not always use information from these systems. Concepts from the cognitive engineering literature on users’ responses to warning systems may help to define physicians’ responses to reminders. Based on this literature, we suggest an exhaustive set of possible responses to clinical reminders, consisting of four responses named “Compliance”, “Reliance”, “Spillover” and “Reactance”. We suggest statistical measures to estimate these responses and empirically demonstrate them on data from a large-scale clinical reminder system for secondary prevention of cardiovascular diseases. There was evidence for Compliance, probably since the physicians found the reminders informative, but not for Reliance, in line with the notion that Compliance and Reliance are two distinct types of trust in information from decision-support systems. Our research supports the notion that CDSS can promote closing the treatment gap and improve physicians’ adherence to guidelines.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19000935</pmid><doi>10.1016/j.jbi.2008.10.001</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0464 |
ispartof | Journal of biomedical informatics, 2009-04, Vol.42 (2), p.317-326 |
issn | 1532-0464 1532-0480 |
language | eng |
recordid | cdi_proquest_miscellaneous_67048990 |
source | MEDLINE; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Attitude of Health Personnel Cholesterol Cognitive engineering Compliance Data Interpretation, Statistical Decision aids Decision Support Systems, Clinical Dyslipidemia Guidelines Health Knowledge, Attitudes, Practice Humans Medical decision support systems Physicians - psychology Professional Practice Reactance Reliance Reminder Systems Spillover Treatment gap |
title | Defining and measuring physicians’ responses to clinical reminders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20and%20measuring%20physicians%E2%80%99%20responses%20to%20clinical%20reminders&rft.jtitle=Journal%20of%20biomedical%20informatics&rft.au=Vashitz,%20Geva&rft.date=2009-04&rft.volume=42&rft.issue=2&rft.spage=317&rft.epage=326&rft.pages=317-326&rft.issn=1532-0464&rft.eissn=1532-0480&rft_id=info:doi/10.1016/j.jbi.2008.10.001&rft_dat=%3Cproquest_cross%3E67048990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20439666&rft_id=info:pmid/19000935&rft_els_id=S1532046408001305&rfr_iscdi=true |