Comparison of stable human Treg and Th clones by transcriptional profiling

From cancerous and non-cancerous patients, we derived stable clones of CD4⁺ Treg, defined as clones that expressed high CD25 at rest, were anergic in vitro, and suppressed the proliferation of co-cultured CD4⁺ cells. A conserved region of FOXP3 intron 1 was demethylated in all Treg clones, whereas i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of immunology 2009-03, Vol.39 (3), p.869-882
Hauptverfasser: Stockis, Julie, Fink, Wolfram, François, Violaine, Connerotte, Thierry, de Smet, Charles, Knoops, Laurent, van der Bruggen, Pierre, Boon, Thierry, Coulie, Pierre G, Lucas, Sophie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 882
container_issue 3
container_start_page 869
container_title European journal of immunology
container_volume 39
creator Stockis, Julie
Fink, Wolfram
François, Violaine
Connerotte, Thierry
de Smet, Charles
Knoops, Laurent
van der Bruggen, Pierre
Boon, Thierry
Coulie, Pierre G
Lucas, Sophie
description From cancerous and non-cancerous patients, we derived stable clones of CD4⁺ Treg, defined as clones that expressed high CD25 at rest, were anergic in vitro, and suppressed the proliferation of co-cultured CD4⁺ cells. A conserved region of FOXP3 intron 1 was demethylated in all Treg clones, whereas it was methylated in non-regulatory Th and CTL clones. In our panel of human clones, this stable epigenetic mark correlated better with suppressive activity than did FOXP3 mRNA or protein expression. We used expression microarrays to compare Treg and Th clones after activation, which is required for suppressive function. The transcriptional profile that is specific of activated Treg clones includes a TGF-β signature. Both activated Treg and Th clones produced the latent form of TGF-β. However, SMAD2 phosphorylation was observed after activation in the Treg but not in the Th clones, indicating that only activated Treg clones produced the bioactive form of TGF-β. A TGF-β signature was also displayed by a Th clone "suppressed" by a Treg clone. In conclusion, the hallmark of our panel of activated human Treg clones is to produce bioactive TGF-β which has autocrine actions on Tregs and can have paracrine actions on other T cells.
doi_str_mv 10.1002/eji.200838807
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67039694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891850763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5017-818767b1e3f1715d92a92c33ee837f8dd7209f82bbafed96537bc3c45f3f50523</originalsourceid><addsrcrecordid>eNp9kT1PIzEQQC3ECcJHSQuuTjQbZuz12i5RlONAka64UFveXTsY7a6DnQjl37OnRHAVlZvnN6M3hFwhTBGA3bnXMGUAiisF8ohMUDAsSizxmEwAsCyYVnBKznJ-BQBdCX1CTlEzVlZcTcjTLPZrm0KOA42e5o2tO0dftr0d6DK5FbVDS5cvtOni4DKtd3ST7JCbFNabEAfb0XWKPnRhWF2QH9522V0e3nPy_Gu-nP0uFn8eHmf3i6IRgLJQqGQla3Tco0TRamY1azh3TnHpVdtKBtorVtfWu3ZcmMu64U0pPPcCBOPn5OfeO05-27q8MX3Ijes6O7i4zaaSwHWlyxG8_RZEpVEJkBUf0WKPNinmnJw36xR6m3YGwfzrbMbO5rPzyF8f1Nu6d-0XfQg7AnIPvIfO7b63mfnT4__qm_1Pb6Oxq_E05vkvA-SAFWgmSv4B8cKRJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891850763</pqid></control><display><type>article</type><title>Comparison of stable human Treg and Th clones by transcriptional profiling</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Stockis, Julie ; Fink, Wolfram ; François, Violaine ; Connerotte, Thierry ; de Smet, Charles ; Knoops, Laurent ; van der Bruggen, Pierre ; Boon, Thierry ; Coulie, Pierre G ; Lucas, Sophie</creator><creatorcontrib>Stockis, Julie ; Fink, Wolfram ; François, Violaine ; Connerotte, Thierry ; de Smet, Charles ; Knoops, Laurent ; van der Bruggen, Pierre ; Boon, Thierry ; Coulie, Pierre G ; Lucas, Sophie</creatorcontrib><description>From cancerous and non-cancerous patients, we derived stable clones of CD4⁺ Treg, defined as clones that expressed high CD25 at rest, were anergic in vitro, and suppressed the proliferation of co-cultured CD4⁺ cells. A conserved region of FOXP3 intron 1 was demethylated in all Treg clones, whereas it was methylated in non-regulatory Th and CTL clones. In our panel of human clones, this stable epigenetic mark correlated better with suppressive activity than did FOXP3 mRNA or protein expression. We used expression microarrays to compare Treg and Th clones after activation, which is required for suppressive function. The transcriptional profile that is specific of activated Treg clones includes a TGF-β signature. Both activated Treg and Th clones produced the latent form of TGF-β. However, SMAD2 phosphorylation was observed after activation in the Treg but not in the Th clones, indicating that only activated Treg clones produced the bioactive form of TGF-β. A TGF-β signature was also displayed by a Th clone "suppressed" by a Treg clone. In conclusion, the hallmark of our panel of activated human Treg clones is to produce bioactive TGF-β which has autocrine actions on Tregs and can have paracrine actions on other T cells.</description><identifier>ISSN: 0014-2980</identifier><identifier>EISSN: 1521-4141</identifier><identifier>DOI: 10.1002/eji.200838807</identifier><identifier>PMID: 19224638</identifier><language>eng</language><publisher>Weinheim: Wiley-VCH Verlag</publisher><subject>Clone Cells - immunology ; Clone Cells - metabolism ; DNA Methylation - genetics ; DNA Methylation - immunology ; Female ; Forkhead Transcription Factors - genetics ; Forkhead Transcription Factors - immunology ; Forkhead Transcription Factors - metabolism ; Gene Expression Profiling ; Human T‐cell clones ; Humans ; Lymphocyte Activation - genetics ; Lymphocyte Activation - immunology ; Male ; Melanoma - immunology ; Melanoma - metabolism ; Skin Neoplasms - immunology ; Skin Neoplasms - metabolism ; Smad2 Protein - immunology ; Smad2 Protein - metabolism ; T-Lymphocytes, Helper-Inducer - immunology ; T-Lymphocytes, Helper-Inducer - metabolism ; T-Lymphocytes, Regulatory - immunology ; T-Lymphocytes, Regulatory - metabolism ; TGF‐β ; Transforming Growth Factor beta - immunology ; Transforming Growth Factor beta - metabolism ; Treg</subject><ispartof>European journal of immunology, 2009-03, Vol.39 (3), p.869-882</ispartof><rights>Copyright © 2009 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5017-818767b1e3f1715d92a92c33ee837f8dd7209f82bbafed96537bc3c45f3f50523</citedby><cites>FETCH-LOGICAL-c5017-818767b1e3f1715d92a92c33ee837f8dd7209f82bbafed96537bc3c45f3f50523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feji.200838807$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feji.200838807$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19224638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stockis, Julie</creatorcontrib><creatorcontrib>Fink, Wolfram</creatorcontrib><creatorcontrib>François, Violaine</creatorcontrib><creatorcontrib>Connerotte, Thierry</creatorcontrib><creatorcontrib>de Smet, Charles</creatorcontrib><creatorcontrib>Knoops, Laurent</creatorcontrib><creatorcontrib>van der Bruggen, Pierre</creatorcontrib><creatorcontrib>Boon, Thierry</creatorcontrib><creatorcontrib>Coulie, Pierre G</creatorcontrib><creatorcontrib>Lucas, Sophie</creatorcontrib><title>Comparison of stable human Treg and Th clones by transcriptional profiling</title><title>European journal of immunology</title><addtitle>Eur J Immunol</addtitle><description>From cancerous and non-cancerous patients, we derived stable clones of CD4⁺ Treg, defined as clones that expressed high CD25 at rest, were anergic in vitro, and suppressed the proliferation of co-cultured CD4⁺ cells. A conserved region of FOXP3 intron 1 was demethylated in all Treg clones, whereas it was methylated in non-regulatory Th and CTL clones. In our panel of human clones, this stable epigenetic mark correlated better with suppressive activity than did FOXP3 mRNA or protein expression. We used expression microarrays to compare Treg and Th clones after activation, which is required for suppressive function. The transcriptional profile that is specific of activated Treg clones includes a TGF-β signature. Both activated Treg and Th clones produced the latent form of TGF-β. However, SMAD2 phosphorylation was observed after activation in the Treg but not in the Th clones, indicating that only activated Treg clones produced the bioactive form of TGF-β. A TGF-β signature was also displayed by a Th clone "suppressed" by a Treg clone. In conclusion, the hallmark of our panel of activated human Treg clones is to produce bioactive TGF-β which has autocrine actions on Tregs and can have paracrine actions on other T cells.</description><subject>Clone Cells - immunology</subject><subject>Clone Cells - metabolism</subject><subject>DNA Methylation - genetics</subject><subject>DNA Methylation - immunology</subject><subject>Female</subject><subject>Forkhead Transcription Factors - genetics</subject><subject>Forkhead Transcription Factors - immunology</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>Gene Expression Profiling</subject><subject>Human T‐cell clones</subject><subject>Humans</subject><subject>Lymphocyte Activation - genetics</subject><subject>Lymphocyte Activation - immunology</subject><subject>Male</subject><subject>Melanoma - immunology</subject><subject>Melanoma - metabolism</subject><subject>Skin Neoplasms - immunology</subject><subject>Skin Neoplasms - metabolism</subject><subject>Smad2 Protein - immunology</subject><subject>Smad2 Protein - metabolism</subject><subject>T-Lymphocytes, Helper-Inducer - immunology</subject><subject>T-Lymphocytes, Helper-Inducer - metabolism</subject><subject>T-Lymphocytes, Regulatory - immunology</subject><subject>T-Lymphocytes, Regulatory - metabolism</subject><subject>TGF‐β</subject><subject>Transforming Growth Factor beta - immunology</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Treg</subject><issn>0014-2980</issn><issn>1521-4141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kT1PIzEQQC3ECcJHSQuuTjQbZuz12i5RlONAka64UFveXTsY7a6DnQjl37OnRHAVlZvnN6M3hFwhTBGA3bnXMGUAiisF8ohMUDAsSizxmEwAsCyYVnBKznJ-BQBdCX1CTlEzVlZcTcjTLPZrm0KOA42e5o2tO0dftr0d6DK5FbVDS5cvtOni4DKtd3ST7JCbFNabEAfb0XWKPnRhWF2QH9522V0e3nPy_Gu-nP0uFn8eHmf3i6IRgLJQqGQla3Tco0TRamY1azh3TnHpVdtKBtorVtfWu3ZcmMu64U0pPPcCBOPn5OfeO05-27q8MX3Ijes6O7i4zaaSwHWlyxG8_RZEpVEJkBUf0WKPNinmnJw36xR6m3YGwfzrbMbO5rPzyF8f1Nu6d-0XfQg7AnIPvIfO7b63mfnT4__qm_1Pb6Oxq_E05vkvA-SAFWgmSv4B8cKRJA</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Stockis, Julie</creator><creator>Fink, Wolfram</creator><creator>François, Violaine</creator><creator>Connerotte, Thierry</creator><creator>de Smet, Charles</creator><creator>Knoops, Laurent</creator><creator>van der Bruggen, Pierre</creator><creator>Boon, Thierry</creator><creator>Coulie, Pierre G</creator><creator>Lucas, Sophie</creator><general>Wiley-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>200903</creationdate><title>Comparison of stable human Treg and Th clones by transcriptional profiling</title><author>Stockis, Julie ; Fink, Wolfram ; François, Violaine ; Connerotte, Thierry ; de Smet, Charles ; Knoops, Laurent ; van der Bruggen, Pierre ; Boon, Thierry ; Coulie, Pierre G ; Lucas, Sophie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5017-818767b1e3f1715d92a92c33ee837f8dd7209f82bbafed96537bc3c45f3f50523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Clone Cells - immunology</topic><topic>Clone Cells - metabolism</topic><topic>DNA Methylation - genetics</topic><topic>DNA Methylation - immunology</topic><topic>Female</topic><topic>Forkhead Transcription Factors - genetics</topic><topic>Forkhead Transcription Factors - immunology</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>Gene Expression Profiling</topic><topic>Human T‐cell clones</topic><topic>Humans</topic><topic>Lymphocyte Activation - genetics</topic><topic>Lymphocyte Activation - immunology</topic><topic>Male</topic><topic>Melanoma - immunology</topic><topic>Melanoma - metabolism</topic><topic>Skin Neoplasms - immunology</topic><topic>Skin Neoplasms - metabolism</topic><topic>Smad2 Protein - immunology</topic><topic>Smad2 Protein - metabolism</topic><topic>T-Lymphocytes, Helper-Inducer - immunology</topic><topic>T-Lymphocytes, Helper-Inducer - metabolism</topic><topic>T-Lymphocytes, Regulatory - immunology</topic><topic>T-Lymphocytes, Regulatory - metabolism</topic><topic>TGF‐β</topic><topic>Transforming Growth Factor beta - immunology</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Treg</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stockis, Julie</creatorcontrib><creatorcontrib>Fink, Wolfram</creatorcontrib><creatorcontrib>François, Violaine</creatorcontrib><creatorcontrib>Connerotte, Thierry</creatorcontrib><creatorcontrib>de Smet, Charles</creatorcontrib><creatorcontrib>Knoops, Laurent</creatorcontrib><creatorcontrib>van der Bruggen, Pierre</creatorcontrib><creatorcontrib>Boon, Thierry</creatorcontrib><creatorcontrib>Coulie, Pierre G</creatorcontrib><creatorcontrib>Lucas, Sophie</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stockis, Julie</au><au>Fink, Wolfram</au><au>François, Violaine</au><au>Connerotte, Thierry</au><au>de Smet, Charles</au><au>Knoops, Laurent</au><au>van der Bruggen, Pierre</au><au>Boon, Thierry</au><au>Coulie, Pierre G</au><au>Lucas, Sophie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of stable human Treg and Th clones by transcriptional profiling</atitle><jtitle>European journal of immunology</jtitle><addtitle>Eur J Immunol</addtitle><date>2009-03</date><risdate>2009</risdate><volume>39</volume><issue>3</issue><spage>869</spage><epage>882</epage><pages>869-882</pages><issn>0014-2980</issn><eissn>1521-4141</eissn><abstract>From cancerous and non-cancerous patients, we derived stable clones of CD4⁺ Treg, defined as clones that expressed high CD25 at rest, were anergic in vitro, and suppressed the proliferation of co-cultured CD4⁺ cells. A conserved region of FOXP3 intron 1 was demethylated in all Treg clones, whereas it was methylated in non-regulatory Th and CTL clones. In our panel of human clones, this stable epigenetic mark correlated better with suppressive activity than did FOXP3 mRNA or protein expression. We used expression microarrays to compare Treg and Th clones after activation, which is required for suppressive function. The transcriptional profile that is specific of activated Treg clones includes a TGF-β signature. Both activated Treg and Th clones produced the latent form of TGF-β. However, SMAD2 phosphorylation was observed after activation in the Treg but not in the Th clones, indicating that only activated Treg clones produced the bioactive form of TGF-β. A TGF-β signature was also displayed by a Th clone "suppressed" by a Treg clone. In conclusion, the hallmark of our panel of activated human Treg clones is to produce bioactive TGF-β which has autocrine actions on Tregs and can have paracrine actions on other T cells.</abstract><cop>Weinheim</cop><pub>Wiley-VCH Verlag</pub><pmid>19224638</pmid><doi>10.1002/eji.200838807</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-2980
ispartof European journal of immunology, 2009-03, Vol.39 (3), p.869-882
issn 0014-2980
1521-4141
language eng
recordid cdi_proquest_miscellaneous_67039694
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content; EZB-FREE-00999 freely available EZB journals
subjects Clone Cells - immunology
Clone Cells - metabolism
DNA Methylation - genetics
DNA Methylation - immunology
Female
Forkhead Transcription Factors - genetics
Forkhead Transcription Factors - immunology
Forkhead Transcription Factors - metabolism
Gene Expression Profiling
Human T‐cell clones
Humans
Lymphocyte Activation - genetics
Lymphocyte Activation - immunology
Male
Melanoma - immunology
Melanoma - metabolism
Skin Neoplasms - immunology
Skin Neoplasms - metabolism
Smad2 Protein - immunology
Smad2 Protein - metabolism
T-Lymphocytes, Helper-Inducer - immunology
T-Lymphocytes, Helper-Inducer - metabolism
T-Lymphocytes, Regulatory - immunology
T-Lymphocytes, Regulatory - metabolism
TGF‐β
Transforming Growth Factor beta - immunology
Transforming Growth Factor beta - metabolism
Treg
title Comparison of stable human Treg and Th clones by transcriptional profiling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20stable%20human%20Treg%20and%20Th%20clones%20by%20transcriptional%20profiling&rft.jtitle=European%20journal%20of%20immunology&rft.au=Stockis,%20Julie&rft.date=2009-03&rft.volume=39&rft.issue=3&rft.spage=869&rft.epage=882&rft.pages=869-882&rft.issn=0014-2980&rft.eissn=1521-4141&rft_id=info:doi/10.1002/eji.200838807&rft_dat=%3Cproquest_cross%3E1891850763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891850763&rft_id=info:pmid/19224638&rfr_iscdi=true