Lattice and non-lattice models of tumour angiogenesis
In order to progress from the relatively harmless avascular state to the potentially lethal vascular state, solid tumours must induce the growth of new blood vessels from existing ones, a process called angiogenesis. The capillary growth centres around endothelial cells: there are several cell-based...
Gespeichert in:
Veröffentlicht in: | Bulletin of mathematical biology 2004-11, Vol.66 (6), p.1785-1819 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1819 |
---|---|
container_issue | 6 |
container_start_page | 1785 |
container_title | Bulletin of mathematical biology |
container_volume | 66 |
creator | Plank, M.J. Sleeman, B.D. |
description | In order to progress from the relatively harmless avascular state to the potentially lethal vascular state, solid tumours must induce the growth of new blood vessels from existing ones, a process called angiogenesis. The capillary growth centres around endothelial cells: there are several cell-based models of this process in the literature and these have reproduced some of the key microscopic features of capillary growth. The most common approach is to simulate the movement of leading endothelial cells on a regular lattice. Here, we apply a circular random walk model to the process of angiogenesis, and thus allow the cells to move independently of a lattice; the results display good agreement with empirical observations. We also run simulations of two lattice-based models in order to make a critical comparison of the different modelling approaches. Finally, non-lattice simulations are carried out in the context of a realistic model of tumour angiogenesis, and potential anti-angiogenic strategies are evaluated. |
doi_str_mv | 10.1016/j.bulm.2004.04.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67036361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092824004000382</els_id><sourcerecordid>2094906281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-4a23a44731debeeb27f372efa1d8b38fd5044ee33cbe3d60acd7ef05da225e773</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7rr6BzzI4sFb6-SracGLLH7Bghc9hzSZLilto00r-O9t2QXBg_DCMPDMy_AQckkhpUCz2zotx6ZNGYBI5wA9IksqGUuKDNgxWQIULMmZgAU5i7EGAFXw4pQsqJwoLuWSyK0ZBm9xbTq37kKXNIe9DQ6buA7VehjbMPYTsPNhhx1GH8_JSWWaiBeHuSLvjw9vm-dk-_r0srnfJparYkiEYdwIoTh1WCKWTFVcMawMdXnJ88pJEAKRc1sidxkY6xRWIJ1hTKJSfEVu9r0fffgcMQ669dFi05gOwxh1poBnPKMTeP0HrKefu-k3rbiguaBMThDbQ7YPMfZY6Y_et6b_1hT0bFTXejaqZ6N6DszNV4fmsWzR_Z4cFE7A3R6YdOGXx15H67Gz6HyPdtAu-P_6fwBkf4a-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734184125</pqid></control><display><type>article</type><title>Lattice and non-lattice models of tumour angiogenesis</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Plank, M.J. ; Sleeman, B.D.</creator><creatorcontrib>Plank, M.J. ; Sleeman, B.D.</creatorcontrib><description>In order to progress from the relatively harmless avascular state to the potentially lethal vascular state, solid tumours must induce the growth of new blood vessels from existing ones, a process called angiogenesis. The capillary growth centres around endothelial cells: there are several cell-based models of this process in the literature and these have reproduced some of the key microscopic features of capillary growth. The most common approach is to simulate the movement of leading endothelial cells on a regular lattice. Here, we apply a circular random walk model to the process of angiogenesis, and thus allow the cells to move independently of a lattice; the results display good agreement with empirical observations. We also run simulations of two lattice-based models in order to make a critical comparison of the different modelling approaches. Finally, non-lattice simulations are carried out in the context of a realistic model of tumour angiogenesis, and potential anti-angiogenic strategies are evaluated.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1016/j.bulm.2004.04.001</identifier><identifier>PMID: 15522355</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Angiogenesis ; Angiogenesis Inhibitors ; Animals ; Blood vessels ; Capillaries - physiopathology ; Computer Simulation ; Endothelium, Vascular - physiopathology ; Humans ; Models, Biological ; Models, Cardiovascular ; Neoplasms - blood supply ; Neoplasms - pathology ; Neovascularization, Pathologic - pathology ; Stochastic Processes</subject><ispartof>Bulletin of mathematical biology, 2004-11, Vol.66 (6), p.1785-1819</ispartof><rights>2004 Society for Mathematical Biology</rights><rights>Society for Mathematical Biology 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-4a23a44731debeeb27f372efa1d8b38fd5044ee33cbe3d60acd7ef05da225e773</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15522355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Plank, M.J.</creatorcontrib><creatorcontrib>Sleeman, B.D.</creatorcontrib><title>Lattice and non-lattice models of tumour angiogenesis</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><description>In order to progress from the relatively harmless avascular state to the potentially lethal vascular state, solid tumours must induce the growth of new blood vessels from existing ones, a process called angiogenesis. The capillary growth centres around endothelial cells: there are several cell-based models of this process in the literature and these have reproduced some of the key microscopic features of capillary growth. The most common approach is to simulate the movement of leading endothelial cells on a regular lattice. Here, we apply a circular random walk model to the process of angiogenesis, and thus allow the cells to move independently of a lattice; the results display good agreement with empirical observations. We also run simulations of two lattice-based models in order to make a critical comparison of the different modelling approaches. Finally, non-lattice simulations are carried out in the context of a realistic model of tumour angiogenesis, and potential anti-angiogenic strategies are evaluated.</description><subject>Angiogenesis</subject><subject>Angiogenesis Inhibitors</subject><subject>Animals</subject><subject>Blood vessels</subject><subject>Capillaries - physiopathology</subject><subject>Computer Simulation</subject><subject>Endothelium, Vascular - physiopathology</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Models, Cardiovascular</subject><subject>Neoplasms - blood supply</subject><subject>Neoplasms - pathology</subject><subject>Neovascularization, Pathologic - pathology</subject><subject>Stochastic Processes</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMo7rr6BzzI4sFb6-SracGLLH7Bghc9hzSZLilto00r-O9t2QXBg_DCMPDMy_AQckkhpUCz2zotx6ZNGYBI5wA9IksqGUuKDNgxWQIULMmZgAU5i7EGAFXw4pQsqJwoLuWSyK0ZBm9xbTq37kKXNIe9DQ6buA7VehjbMPYTsPNhhx1GH8_JSWWaiBeHuSLvjw9vm-dk-_r0srnfJparYkiEYdwIoTh1WCKWTFVcMawMdXnJ88pJEAKRc1sidxkY6xRWIJ1hTKJSfEVu9r0fffgcMQ669dFi05gOwxh1poBnPKMTeP0HrKefu-k3rbiguaBMThDbQ7YPMfZY6Y_et6b_1hT0bFTXejaqZ6N6DszNV4fmsWzR_Z4cFE7A3R6YdOGXx15H67Gz6HyPdtAu-P_6fwBkf4a-</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Plank, M.J.</creator><creator>Sleeman, B.D.</creator><general>Elsevier Ltd</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20041101</creationdate><title>Lattice and non-lattice models of tumour angiogenesis</title><author>Plank, M.J. ; Sleeman, B.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-4a23a44731debeeb27f372efa1d8b38fd5044ee33cbe3d60acd7ef05da225e773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Angiogenesis</topic><topic>Angiogenesis Inhibitors</topic><topic>Animals</topic><topic>Blood vessels</topic><topic>Capillaries - physiopathology</topic><topic>Computer Simulation</topic><topic>Endothelium, Vascular - physiopathology</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Models, Cardiovascular</topic><topic>Neoplasms - blood supply</topic><topic>Neoplasms - pathology</topic><topic>Neovascularization, Pathologic - pathology</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plank, M.J.</creatorcontrib><creatorcontrib>Sleeman, B.D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plank, M.J.</au><au>Sleeman, B.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice and non-lattice models of tumour angiogenesis</atitle><jtitle>Bulletin of mathematical biology</jtitle><addtitle>Bull Math Biol</addtitle><date>2004-11-01</date><risdate>2004</risdate><volume>66</volume><issue>6</issue><spage>1785</spage><epage>1819</epage><pages>1785-1819</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>In order to progress from the relatively harmless avascular state to the potentially lethal vascular state, solid tumours must induce the growth of new blood vessels from existing ones, a process called angiogenesis. The capillary growth centres around endothelial cells: there are several cell-based models of this process in the literature and these have reproduced some of the key microscopic features of capillary growth. The most common approach is to simulate the movement of leading endothelial cells on a regular lattice. Here, we apply a circular random walk model to the process of angiogenesis, and thus allow the cells to move independently of a lattice; the results display good agreement with empirical observations. We also run simulations of two lattice-based models in order to make a critical comparison of the different modelling approaches. Finally, non-lattice simulations are carried out in the context of a realistic model of tumour angiogenesis, and potential anti-angiogenic strategies are evaluated.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>15522355</pmid><doi>10.1016/j.bulm.2004.04.001</doi><tpages>35</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8240 |
ispartof | Bulletin of mathematical biology, 2004-11, Vol.66 (6), p.1785-1819 |
issn | 0092-8240 1522-9602 |
language | eng |
recordid | cdi_proquest_miscellaneous_67036361 |
source | MEDLINE; SpringerLink Journals; Alma/SFX Local Collection |
subjects | Angiogenesis Angiogenesis Inhibitors Animals Blood vessels Capillaries - physiopathology Computer Simulation Endothelium, Vascular - physiopathology Humans Models, Biological Models, Cardiovascular Neoplasms - blood supply Neoplasms - pathology Neovascularization, Pathologic - pathology Stochastic Processes |
title | Lattice and non-lattice models of tumour angiogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A39%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20and%20non-lattice%20models%20of%20tumour%20angiogenesis&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Plank,%20M.J.&rft.date=2004-11-01&rft.volume=66&rft.issue=6&rft.spage=1785&rft.epage=1819&rft.pages=1785-1819&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1016/j.bulm.2004.04.001&rft_dat=%3Cproquest_cross%3E2094906281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734184125&rft_id=info:pmid/15522355&rft_els_id=S0092824004000382&rfr_iscdi=true |