Ultrasound and Microbubble-Targeted Delivery of Macromolecules Is Regulated by Induction of Endocytosis and Pore Formation

Contrast microbubbles in combination with ultrasound (US) are promising vehicles for local drug and gene delivery. However, the exact mechanisms behind intracellular delivery of therapeutic compounds remain to be resolved. We hypothesized that endocytosis and pore formation are involved during US an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 2009-03, Vol.104 (5), p.679-687
Hauptverfasser: Meijering, Bernadet D.M, Juffermans, Lynda J.M, van Wamel, Annemieke, Henning, Rob H, Zuhorn, Inge S, Emmer, Marcia, Versteilen, Amanda M.G, Paulus, Walter J, van Gilst, Wiek H, Kooiman, Klazina, de Jong, Nico, Musters, René J.P, Deelman, Leo E, Kamp, Otto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 687
container_issue 5
container_start_page 679
container_title Circulation research
container_volume 104
creator Meijering, Bernadet D.M
Juffermans, Lynda J.M
van Wamel, Annemieke
Henning, Rob H
Zuhorn, Inge S
Emmer, Marcia
Versteilen, Amanda M.G
Paulus, Walter J
van Gilst, Wiek H
Kooiman, Klazina
de Jong, Nico
Musters, René J.P
Deelman, Leo E
Kamp, Otto
description Contrast microbubbles in combination with ultrasound (US) are promising vehicles for local drug and gene delivery. However, the exact mechanisms behind intracellular delivery of therapeutic compounds remain to be resolved. We hypothesized that endocytosis and pore formation are involved during US and microbubble targeted delivery (UMTD) of therapeutic compounds. Therefore, primary endothelial cells were subjected to UMTD of fluorescent dextrans (4.4 to 500 kDa) using 1 MHz pulsed US with 0.22-MPa peak-negative pressure, during 30 seconds. Fluorescence microscopy showed homogeneous distribution of 4.4- and 70-kDa dextrans through the cytosol, and localization of 155- and 500-kDa dextrans in distinct vesicles after UMTD. After ATP depletion, reduced uptake of 4.4-kDa dextran and no uptake of 500-kDa dextran was observed after UMTD. Independently inhibiting clathrin- and caveolae-mediated endocytosis, as well as macropinocytosis significantly decreased intracellular delivery of 4.4- to 500-kDa dextrans. Furthermore, 3D fluorescence microscopy demonstrated dextran vesicles (500 kDa) to colocalize with caveolin-1 and especially clathrin. Finally, after UMTD of dextran (500 kDa) into rat femoral artery endothelium in vivo, dextran molecules were again localized in vesicles that partially colocalized with caveolin-1 and clathrin. Together, these data indicated uptake of molecules via endocytosis after UMTD. In addition to triggering endocytosis, UMTD also evoked transient pore formation, as demonstrated by the influx of calcium ions and cellular release of preloaded dextrans after US and microbubble exposure. In conclusion, these data demonstrate that endocytosis is a key mechanism in UMTD besides transient pore formation, with the contribution of endocytosis being dependent on molecular size.
doi_str_mv 10.1161/CIRCRESAHA.108.183806
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67031723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67031723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5326-bdf2f1db57ab7aac989a130ae38e40fcbf6cbbe62d31d521c0d4175aaf8faaf23</originalsourceid><addsrcrecordid>eNpF0c1uEzEQAGALgWgoPAJoL3Db4LH39xilKY3UChTa82psj9sF77rYu1Th6XFIRA-2pdE3Y3uGsffAlwAVfF5vd-vd5vvqarUE3iyhkQ2vXrAFlKLIi7KGl2zBOW_zWkp-xt7E-INzKKRoX7MzaKFqikIu2J87NwWMfh5Nhmnd9Dp4NSvlKL_FcE8TmeyCXP-bwj7zNrvBBAbvSM-OYraN2Y7uZ4cHp_bZdjSznno_HuxmNF7vJx_7-K_4Nx8ou_RhwIN4y15ZdJHenc5zdne5uV1f5ddfv2zXq-tcl1JUuTJWWDCqrFHViLptWgTJkWRDBbda2UorRZUwEkwpQHNTQF0i2samTchz9ulY9zH4XzPFqRv6qMk5HMnPsatqLqEWMsHyCNMPYwxku8fQDxj2HfDu0PTuuekp1HTHpqe8D6cLZjWQec46dTmBjyeAUaOzAUfdx_9OgKiEqMvkiqN78m6iEH-6-YlC90DopocuTZNLDiIXaazpyZLnKQKV_AsODp3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67031723</pqid></control><display><type>article</type><title>Ultrasound and Microbubble-Targeted Delivery of Macromolecules Is Regulated by Induction of Endocytosis and Pore Formation</title><source>Journals@Ovid Ovid Autoload</source><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Meijering, Bernadet D.M ; Juffermans, Lynda J.M ; van Wamel, Annemieke ; Henning, Rob H ; Zuhorn, Inge S ; Emmer, Marcia ; Versteilen, Amanda M.G ; Paulus, Walter J ; van Gilst, Wiek H ; Kooiman, Klazina ; de Jong, Nico ; Musters, René J.P ; Deelman, Leo E ; Kamp, Otto</creator><creatorcontrib>Meijering, Bernadet D.M ; Juffermans, Lynda J.M ; van Wamel, Annemieke ; Henning, Rob H ; Zuhorn, Inge S ; Emmer, Marcia ; Versteilen, Amanda M.G ; Paulus, Walter J ; van Gilst, Wiek H ; Kooiman, Klazina ; de Jong, Nico ; Musters, René J.P ; Deelman, Leo E ; Kamp, Otto</creatorcontrib><description>Contrast microbubbles in combination with ultrasound (US) are promising vehicles for local drug and gene delivery. However, the exact mechanisms behind intracellular delivery of therapeutic compounds remain to be resolved. We hypothesized that endocytosis and pore formation are involved during US and microbubble targeted delivery (UMTD) of therapeutic compounds. Therefore, primary endothelial cells were subjected to UMTD of fluorescent dextrans (4.4 to 500 kDa) using 1 MHz pulsed US with 0.22-MPa peak-negative pressure, during 30 seconds. Fluorescence microscopy showed homogeneous distribution of 4.4- and 70-kDa dextrans through the cytosol, and localization of 155- and 500-kDa dextrans in distinct vesicles after UMTD. After ATP depletion, reduced uptake of 4.4-kDa dextran and no uptake of 500-kDa dextran was observed after UMTD. Independently inhibiting clathrin- and caveolae-mediated endocytosis, as well as macropinocytosis significantly decreased intracellular delivery of 4.4- to 500-kDa dextrans. Furthermore, 3D fluorescence microscopy demonstrated dextran vesicles (500 kDa) to colocalize with caveolin-1 and especially clathrin. Finally, after UMTD of dextran (500 kDa) into rat femoral artery endothelium in vivo, dextran molecules were again localized in vesicles that partially colocalized with caveolin-1 and clathrin. Together, these data indicated uptake of molecules via endocytosis after UMTD. In addition to triggering endocytosis, UMTD also evoked transient pore formation, as demonstrated by the influx of calcium ions and cellular release of preloaded dextrans after US and microbubble exposure. In conclusion, these data demonstrate that endocytosis is a key mechanism in UMTD besides transient pore formation, with the contribution of endocytosis being dependent on molecular size.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/CIRCRESAHA.108.183806</identifier><identifier>PMID: 19168443</identifier><identifier>CODEN: CIRUAL</identifier><language>eng</language><publisher>Hagerstown, MD: American Heart Association, Inc</publisher><subject>Adenosine Triphosphate - metabolism ; Androstadienes - pharmacology ; Animals ; Biological and medical sciences ; Biological Transport ; Cattle ; Caveolae - metabolism ; Caveolin 1 - metabolism ; Cells, Cultured ; Chlorpromazine - pharmacology ; Clathrin - metabolism ; Contrast Media - administration &amp; dosage ; Cytosol - metabolism ; Dextrans - administration &amp; dosage ; Dextrans - chemistry ; Dextrans - metabolism ; Drug Delivery Systems ; Endocytosis - drug effects ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Femoral Artery - metabolism ; Filipin - pharmacology ; Fluorescent Dyes - administration &amp; dosage ; Fluorescent Dyes - chemistry ; Fluorescent Dyes - metabolism ; Fundamental and applied biological sciences. Psychology ; Imaging, Three-Dimensional ; Infusions, Intravenous ; Microbubbles ; Microscopy, Fluorescence ; Molecular Weight ; Phospholipids - administration &amp; dosage ; Pinocytosis ; Pressure ; Rats ; Rats, Wistar ; Sulfur Hexafluoride - administration &amp; dosage ; Time Factors ; Transport Vesicles - metabolism ; Ultrasonics ; Vertebrates: cardiovascular system</subject><ispartof>Circulation research, 2009-03, Vol.104 (5), p.679-687</ispartof><rights>2009 American Heart Association, Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5326-bdf2f1db57ab7aac989a130ae38e40fcbf6cbbe62d31d521c0d4175aaf8faaf23</citedby><cites>FETCH-LOGICAL-c5326-bdf2f1db57ab7aac989a130ae38e40fcbf6cbbe62d31d521c0d4175aaf8faaf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3674,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21262275$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19168443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meijering, Bernadet D.M</creatorcontrib><creatorcontrib>Juffermans, Lynda J.M</creatorcontrib><creatorcontrib>van Wamel, Annemieke</creatorcontrib><creatorcontrib>Henning, Rob H</creatorcontrib><creatorcontrib>Zuhorn, Inge S</creatorcontrib><creatorcontrib>Emmer, Marcia</creatorcontrib><creatorcontrib>Versteilen, Amanda M.G</creatorcontrib><creatorcontrib>Paulus, Walter J</creatorcontrib><creatorcontrib>van Gilst, Wiek H</creatorcontrib><creatorcontrib>Kooiman, Klazina</creatorcontrib><creatorcontrib>de Jong, Nico</creatorcontrib><creatorcontrib>Musters, René J.P</creatorcontrib><creatorcontrib>Deelman, Leo E</creatorcontrib><creatorcontrib>Kamp, Otto</creatorcontrib><title>Ultrasound and Microbubble-Targeted Delivery of Macromolecules Is Regulated by Induction of Endocytosis and Pore Formation</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>Contrast microbubbles in combination with ultrasound (US) are promising vehicles for local drug and gene delivery. However, the exact mechanisms behind intracellular delivery of therapeutic compounds remain to be resolved. We hypothesized that endocytosis and pore formation are involved during US and microbubble targeted delivery (UMTD) of therapeutic compounds. Therefore, primary endothelial cells were subjected to UMTD of fluorescent dextrans (4.4 to 500 kDa) using 1 MHz pulsed US with 0.22-MPa peak-negative pressure, during 30 seconds. Fluorescence microscopy showed homogeneous distribution of 4.4- and 70-kDa dextrans through the cytosol, and localization of 155- and 500-kDa dextrans in distinct vesicles after UMTD. After ATP depletion, reduced uptake of 4.4-kDa dextran and no uptake of 500-kDa dextran was observed after UMTD. Independently inhibiting clathrin- and caveolae-mediated endocytosis, as well as macropinocytosis significantly decreased intracellular delivery of 4.4- to 500-kDa dextrans. Furthermore, 3D fluorescence microscopy demonstrated dextran vesicles (500 kDa) to colocalize with caveolin-1 and especially clathrin. Finally, after UMTD of dextran (500 kDa) into rat femoral artery endothelium in vivo, dextran molecules were again localized in vesicles that partially colocalized with caveolin-1 and clathrin. Together, these data indicated uptake of molecules via endocytosis after UMTD. In addition to triggering endocytosis, UMTD also evoked transient pore formation, as demonstrated by the influx of calcium ions and cellular release of preloaded dextrans after US and microbubble exposure. In conclusion, these data demonstrate that endocytosis is a key mechanism in UMTD besides transient pore formation, with the contribution of endocytosis being dependent on molecular size.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Androstadienes - pharmacology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological Transport</subject><subject>Cattle</subject><subject>Caveolae - metabolism</subject><subject>Caveolin 1 - metabolism</subject><subject>Cells, Cultured</subject><subject>Chlorpromazine - pharmacology</subject><subject>Clathrin - metabolism</subject><subject>Contrast Media - administration &amp; dosage</subject><subject>Cytosol - metabolism</subject><subject>Dextrans - administration &amp; dosage</subject><subject>Dextrans - chemistry</subject><subject>Dextrans - metabolism</subject><subject>Drug Delivery Systems</subject><subject>Endocytosis - drug effects</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Femoral Artery - metabolism</subject><subject>Filipin - pharmacology</subject><subject>Fluorescent Dyes - administration &amp; dosage</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Imaging, Three-Dimensional</subject><subject>Infusions, Intravenous</subject><subject>Microbubbles</subject><subject>Microscopy, Fluorescence</subject><subject>Molecular Weight</subject><subject>Phospholipids - administration &amp; dosage</subject><subject>Pinocytosis</subject><subject>Pressure</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Sulfur Hexafluoride - administration &amp; dosage</subject><subject>Time Factors</subject><subject>Transport Vesicles - metabolism</subject><subject>Ultrasonics</subject><subject>Vertebrates: cardiovascular system</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpF0c1uEzEQAGALgWgoPAJoL3Db4LH39xilKY3UChTa82psj9sF77rYu1Th6XFIRA-2pdE3Y3uGsffAlwAVfF5vd-vd5vvqarUE3iyhkQ2vXrAFlKLIi7KGl2zBOW_zWkp-xt7E-INzKKRoX7MzaKFqikIu2J87NwWMfh5Nhmnd9Dp4NSvlKL_FcE8TmeyCXP-bwj7zNrvBBAbvSM-OYraN2Y7uZ4cHp_bZdjSznno_HuxmNF7vJx_7-K_4Nx8ou_RhwIN4y15ZdJHenc5zdne5uV1f5ddfv2zXq-tcl1JUuTJWWDCqrFHViLptWgTJkWRDBbda2UorRZUwEkwpQHNTQF0i2samTchz9ulY9zH4XzPFqRv6qMk5HMnPsatqLqEWMsHyCNMPYwxku8fQDxj2HfDu0PTuuekp1HTHpqe8D6cLZjWQec46dTmBjyeAUaOzAUfdx_9OgKiEqMvkiqN78m6iEH-6-YlC90DopocuTZNLDiIXaazpyZLnKQKV_AsODp3M</recordid><startdate>20090313</startdate><enddate>20090313</enddate><creator>Meijering, Bernadet D.M</creator><creator>Juffermans, Lynda J.M</creator><creator>van Wamel, Annemieke</creator><creator>Henning, Rob H</creator><creator>Zuhorn, Inge S</creator><creator>Emmer, Marcia</creator><creator>Versteilen, Amanda M.G</creator><creator>Paulus, Walter J</creator><creator>van Gilst, Wiek H</creator><creator>Kooiman, Klazina</creator><creator>de Jong, Nico</creator><creator>Musters, René J.P</creator><creator>Deelman, Leo E</creator><creator>Kamp, Otto</creator><general>American Heart Association, Inc</general><general>Lippincott Williams &amp; Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090313</creationdate><title>Ultrasound and Microbubble-Targeted Delivery of Macromolecules Is Regulated by Induction of Endocytosis and Pore Formation</title><author>Meijering, Bernadet D.M ; Juffermans, Lynda J.M ; van Wamel, Annemieke ; Henning, Rob H ; Zuhorn, Inge S ; Emmer, Marcia ; Versteilen, Amanda M.G ; Paulus, Walter J ; van Gilst, Wiek H ; Kooiman, Klazina ; de Jong, Nico ; Musters, René J.P ; Deelman, Leo E ; Kamp, Otto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5326-bdf2f1db57ab7aac989a130ae38e40fcbf6cbbe62d31d521c0d4175aaf8faaf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Androstadienes - pharmacology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological Transport</topic><topic>Cattle</topic><topic>Caveolae - metabolism</topic><topic>Caveolin 1 - metabolism</topic><topic>Cells, Cultured</topic><topic>Chlorpromazine - pharmacology</topic><topic>Clathrin - metabolism</topic><topic>Contrast Media - administration &amp; dosage</topic><topic>Cytosol - metabolism</topic><topic>Dextrans - administration &amp; dosage</topic><topic>Dextrans - chemistry</topic><topic>Dextrans - metabolism</topic><topic>Drug Delivery Systems</topic><topic>Endocytosis - drug effects</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Femoral Artery - metabolism</topic><topic>Filipin - pharmacology</topic><topic>Fluorescent Dyes - administration &amp; dosage</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Imaging, Three-Dimensional</topic><topic>Infusions, Intravenous</topic><topic>Microbubbles</topic><topic>Microscopy, Fluorescence</topic><topic>Molecular Weight</topic><topic>Phospholipids - administration &amp; dosage</topic><topic>Pinocytosis</topic><topic>Pressure</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Sulfur Hexafluoride - administration &amp; dosage</topic><topic>Time Factors</topic><topic>Transport Vesicles - metabolism</topic><topic>Ultrasonics</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meijering, Bernadet D.M</creatorcontrib><creatorcontrib>Juffermans, Lynda J.M</creatorcontrib><creatorcontrib>van Wamel, Annemieke</creatorcontrib><creatorcontrib>Henning, Rob H</creatorcontrib><creatorcontrib>Zuhorn, Inge S</creatorcontrib><creatorcontrib>Emmer, Marcia</creatorcontrib><creatorcontrib>Versteilen, Amanda M.G</creatorcontrib><creatorcontrib>Paulus, Walter J</creatorcontrib><creatorcontrib>van Gilst, Wiek H</creatorcontrib><creatorcontrib>Kooiman, Klazina</creatorcontrib><creatorcontrib>de Jong, Nico</creatorcontrib><creatorcontrib>Musters, René J.P</creatorcontrib><creatorcontrib>Deelman, Leo E</creatorcontrib><creatorcontrib>Kamp, Otto</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meijering, Bernadet D.M</au><au>Juffermans, Lynda J.M</au><au>van Wamel, Annemieke</au><au>Henning, Rob H</au><au>Zuhorn, Inge S</au><au>Emmer, Marcia</au><au>Versteilen, Amanda M.G</au><au>Paulus, Walter J</au><au>van Gilst, Wiek H</au><au>Kooiman, Klazina</au><au>de Jong, Nico</au><au>Musters, René J.P</au><au>Deelman, Leo E</au><au>Kamp, Otto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasound and Microbubble-Targeted Delivery of Macromolecules Is Regulated by Induction of Endocytosis and Pore Formation</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2009-03-13</date><risdate>2009</risdate><volume>104</volume><issue>5</issue><spage>679</spage><epage>687</epage><pages>679-687</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><coden>CIRUAL</coden><abstract>Contrast microbubbles in combination with ultrasound (US) are promising vehicles for local drug and gene delivery. However, the exact mechanisms behind intracellular delivery of therapeutic compounds remain to be resolved. We hypothesized that endocytosis and pore formation are involved during US and microbubble targeted delivery (UMTD) of therapeutic compounds. Therefore, primary endothelial cells were subjected to UMTD of fluorescent dextrans (4.4 to 500 kDa) using 1 MHz pulsed US with 0.22-MPa peak-negative pressure, during 30 seconds. Fluorescence microscopy showed homogeneous distribution of 4.4- and 70-kDa dextrans through the cytosol, and localization of 155- and 500-kDa dextrans in distinct vesicles after UMTD. After ATP depletion, reduced uptake of 4.4-kDa dextran and no uptake of 500-kDa dextran was observed after UMTD. Independently inhibiting clathrin- and caveolae-mediated endocytosis, as well as macropinocytosis significantly decreased intracellular delivery of 4.4- to 500-kDa dextrans. Furthermore, 3D fluorescence microscopy demonstrated dextran vesicles (500 kDa) to colocalize with caveolin-1 and especially clathrin. Finally, after UMTD of dextran (500 kDa) into rat femoral artery endothelium in vivo, dextran molecules were again localized in vesicles that partially colocalized with caveolin-1 and clathrin. Together, these data indicated uptake of molecules via endocytosis after UMTD. In addition to triggering endocytosis, UMTD also evoked transient pore formation, as demonstrated by the influx of calcium ions and cellular release of preloaded dextrans after US and microbubble exposure. In conclusion, these data demonstrate that endocytosis is a key mechanism in UMTD besides transient pore formation, with the contribution of endocytosis being dependent on molecular size.</abstract><cop>Hagerstown, MD</cop><pub>American Heart Association, Inc</pub><pmid>19168443</pmid><doi>10.1161/CIRCRESAHA.108.183806</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-7330
ispartof Circulation research, 2009-03, Vol.104 (5), p.679-687
issn 0009-7330
1524-4571
language eng
recordid cdi_proquest_miscellaneous_67031723
source Journals@Ovid Ovid Autoload; MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adenosine Triphosphate - metabolism
Androstadienes - pharmacology
Animals
Biological and medical sciences
Biological Transport
Cattle
Caveolae - metabolism
Caveolin 1 - metabolism
Cells, Cultured
Chlorpromazine - pharmacology
Clathrin - metabolism
Contrast Media - administration & dosage
Cytosol - metabolism
Dextrans - administration & dosage
Dextrans - chemistry
Dextrans - metabolism
Drug Delivery Systems
Endocytosis - drug effects
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Femoral Artery - metabolism
Filipin - pharmacology
Fluorescent Dyes - administration & dosage
Fluorescent Dyes - chemistry
Fluorescent Dyes - metabolism
Fundamental and applied biological sciences. Psychology
Imaging, Three-Dimensional
Infusions, Intravenous
Microbubbles
Microscopy, Fluorescence
Molecular Weight
Phospholipids - administration & dosage
Pinocytosis
Pressure
Rats
Rats, Wistar
Sulfur Hexafluoride - administration & dosage
Time Factors
Transport Vesicles - metabolism
Ultrasonics
Vertebrates: cardiovascular system
title Ultrasound and Microbubble-Targeted Delivery of Macromolecules Is Regulated by Induction of Endocytosis and Pore Formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasound%20and%20Microbubble-Targeted%20Delivery%20of%20Macromolecules%20Is%20Regulated%20by%20Induction%20of%20Endocytosis%20and%20Pore%20Formation&rft.jtitle=Circulation%20research&rft.au=Meijering,%20Bernadet%20D.M&rft.date=2009-03-13&rft.volume=104&rft.issue=5&rft.spage=679&rft.epage=687&rft.pages=679-687&rft.issn=0009-7330&rft.eissn=1524-4571&rft.coden=CIRUAL&rft_id=info:doi/10.1161/CIRCRESAHA.108.183806&rft_dat=%3Cproquest_cross%3E67031723%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67031723&rft_id=info:pmid/19168443&rfr_iscdi=true