Epitaxial growth of InP nanowires on germanium

The growth of III-V semiconductors on silicon would allow the integration of their superior (opto-)electronic properties with silicon technology. But fundamental issues such as lattice and thermal expansion mismatch and the formation of antiphase domains have prevented the epitaxial integration of I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2004-11, Vol.3 (11), p.769-773
Hauptverfasser: Bakkers, Erik P. A. M, van Dam, Jorden A, De Franceschi, Silvano, Kouwenhoven, Leo P, Kaiser, Monja, Verheijen, Marcel, Wondergem, Harry, van der Sluis, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 773
container_issue 11
container_start_page 769
container_title Nature materials
container_volume 3
creator Bakkers, Erik P. A. M
van Dam, Jorden A
De Franceschi, Silvano
Kouwenhoven, Leo P
Kaiser, Monja
Verheijen, Marcel
Wondergem, Harry
van der Sluis, Paul
description The growth of III-V semiconductors on silicon would allow the integration of their superior (opto-)electronic properties with silicon technology. But fundamental issues such as lattice and thermal expansion mismatch and the formation of antiphase domains have prevented the epitaxial integration of III-V with group IV semiconductors. Here we demonstrate the principle of epitaxial growth of III-V nanowires on a group IV substrate. We have grown InP nanowires on germanium substrates by a vapour-liquid-solid method. Although the crystal lattice mismatch is large (3.7%), the as-grown wires are monocrystalline and virtually free of dislocations. X-ray diffraction unambiguously demonstrates the heteroepitaxial growth of the nanowires. In addition, we show that a low-resistance electrical contact can be obtained between the wires and the substrate.
doi_str_mv 10.1038/nmat1235
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67024131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>971582071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-9221c9ec2389332ccaf4c7fe041df24b40f29e88faedb1ad83b3dc4b5e2fda603</originalsourceid><addsrcrecordid>eNqF0EFLwzAUB_AgiptT8BNI8SB62Exe0rQ9ypg6GOhBzyVNk9nRJjNpmX57I6sbCOLpBd6Pf3h_hM4JnhBM01vTiJYAjQ_QkLCEjxnn-LB_EwIwQCferzAGEsf8GA1IzJI442SIJrN11YqPStTR0tlN-xZZHc3Nc2SEsZvKKR9ZEy2Va4SpuuYUHWlRe3XWzxF6vZ-9TB_Hi6eH-fRuMZaMQzvOAIjMlASaZpSClEIzmWiFGSk1sIJhDZlKUy1UWRBRprSgpWRFrECXgmM6Qlfb3LWz753ybd5UXqq6FkbZzuc8wcAIJf9CSMOpCY4DvPwFV7ZzJhyRA0ASpzyhAV1vkXTWe6d0vnZVI9xnTnD-3XT-03SgF31eVzSq3MO-2gButsCHlQkN7j_8O8yItnNqF7YDX5WRkMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222758673</pqid></control><display><type>article</type><title>Epitaxial growth of InP nanowires on germanium</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bakkers, Erik P. A. M ; van Dam, Jorden A ; De Franceschi, Silvano ; Kouwenhoven, Leo P ; Kaiser, Monja ; Verheijen, Marcel ; Wondergem, Harry ; van der Sluis, Paul</creator><creatorcontrib>Bakkers, Erik P. A. M ; van Dam, Jorden A ; De Franceschi, Silvano ; Kouwenhoven, Leo P ; Kaiser, Monja ; Verheijen, Marcel ; Wondergem, Harry ; van der Sluis, Paul</creatorcontrib><description>The growth of III-V semiconductors on silicon would allow the integration of their superior (opto-)electronic properties with silicon technology. But fundamental issues such as lattice and thermal expansion mismatch and the formation of antiphase domains have prevented the epitaxial integration of III-V with group IV semiconductors. Here we demonstrate the principle of epitaxial growth of III-V nanowires on a group IV substrate. We have grown InP nanowires on germanium substrates by a vapour-liquid-solid method. Although the crystal lattice mismatch is large (3.7%), the as-grown wires are monocrystalline and virtually free of dislocations. X-ray diffraction unambiguously demonstrates the heteroepitaxial growth of the nanowires. In addition, we show that a low-resistance electrical contact can be obtained between the wires and the substrate.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat1235</identifier><identifier>PMID: 15475961</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Germanium ; Germanium - chemistry ; Indium - chemistry ; letter ; Materials Science ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Nanotechnology ; Nanowires ; Optical and Electronic Materials ; Phosphines - chemistry ; Scanning electron microscopy ; Silicon ; Substrates ; Thermal expansion ; Wire ; X-Ray Diffraction</subject><ispartof>Nature materials, 2004-11, Vol.3 (11), p.769-773</ispartof><rights>Springer Nature Limited 2004</rights><rights>Copyright Nature Publishing Group Nov 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-9221c9ec2389332ccaf4c7fe041df24b40f29e88faedb1ad83b3dc4b5e2fda603</citedby><cites>FETCH-LOGICAL-c462t-9221c9ec2389332ccaf4c7fe041df24b40f29e88faedb1ad83b3dc4b5e2fda603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat1235$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat1235$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15475961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bakkers, Erik P. A. M</creatorcontrib><creatorcontrib>van Dam, Jorden A</creatorcontrib><creatorcontrib>De Franceschi, Silvano</creatorcontrib><creatorcontrib>Kouwenhoven, Leo P</creatorcontrib><creatorcontrib>Kaiser, Monja</creatorcontrib><creatorcontrib>Verheijen, Marcel</creatorcontrib><creatorcontrib>Wondergem, Harry</creatorcontrib><creatorcontrib>van der Sluis, Paul</creatorcontrib><title>Epitaxial growth of InP nanowires on germanium</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>The growth of III-V semiconductors on silicon would allow the integration of their superior (opto-)electronic properties with silicon technology. But fundamental issues such as lattice and thermal expansion mismatch and the formation of antiphase domains have prevented the epitaxial integration of III-V with group IV semiconductors. Here we demonstrate the principle of epitaxial growth of III-V nanowires on a group IV substrate. We have grown InP nanowires on germanium substrates by a vapour-liquid-solid method. Although the crystal lattice mismatch is large (3.7%), the as-grown wires are monocrystalline and virtually free of dislocations. X-ray diffraction unambiguously demonstrates the heteroepitaxial growth of the nanowires. In addition, we show that a low-resistance electrical contact can be obtained between the wires and the substrate.</description><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Germanium</subject><subject>Germanium - chemistry</subject><subject>Indium - chemistry</subject><subject>letter</subject><subject>Materials Science</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Optical and Electronic Materials</subject><subject>Phosphines - chemistry</subject><subject>Scanning electron microscopy</subject><subject>Silicon</subject><subject>Substrates</subject><subject>Thermal expansion</subject><subject>Wire</subject><subject>X-Ray Diffraction</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0EFLwzAUB_AgiptT8BNI8SB62Exe0rQ9ypg6GOhBzyVNk9nRJjNpmX57I6sbCOLpBd6Pf3h_hM4JnhBM01vTiJYAjQ_QkLCEjxnn-LB_EwIwQCferzAGEsf8GA1IzJI442SIJrN11YqPStTR0tlN-xZZHc3Nc2SEsZvKKR9ZEy2Va4SpuuYUHWlRe3XWzxF6vZ-9TB_Hi6eH-fRuMZaMQzvOAIjMlASaZpSClEIzmWiFGSk1sIJhDZlKUy1UWRBRprSgpWRFrECXgmM6Qlfb3LWz753ybd5UXqq6FkbZzuc8wcAIJf9CSMOpCY4DvPwFV7ZzJhyRA0ASpzyhAV1vkXTWe6d0vnZVI9xnTnD-3XT-03SgF31eVzSq3MO-2gButsCHlQkN7j_8O8yItnNqF7YDX5WRkMI</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Bakkers, Erik P. A. M</creator><creator>van Dam, Jorden A</creator><creator>De Franceschi, Silvano</creator><creator>Kouwenhoven, Leo P</creator><creator>Kaiser, Monja</creator><creator>Verheijen, Marcel</creator><creator>Wondergem, Harry</creator><creator>van der Sluis, Paul</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20041101</creationdate><title>Epitaxial growth of InP nanowires on germanium</title><author>Bakkers, Erik P. A. M ; van Dam, Jorden A ; De Franceschi, Silvano ; Kouwenhoven, Leo P ; Kaiser, Monja ; Verheijen, Marcel ; Wondergem, Harry ; van der Sluis, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-9221c9ec2389332ccaf4c7fe041df24b40f29e88faedb1ad83b3dc4b5e2fda603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Germanium</topic><topic>Germanium - chemistry</topic><topic>Indium - chemistry</topic><topic>letter</topic><topic>Materials Science</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Optical and Electronic Materials</topic><topic>Phosphines - chemistry</topic><topic>Scanning electron microscopy</topic><topic>Silicon</topic><topic>Substrates</topic><topic>Thermal expansion</topic><topic>Wire</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakkers, Erik P. A. M</creatorcontrib><creatorcontrib>van Dam, Jorden A</creatorcontrib><creatorcontrib>De Franceschi, Silvano</creatorcontrib><creatorcontrib>Kouwenhoven, Leo P</creatorcontrib><creatorcontrib>Kaiser, Monja</creatorcontrib><creatorcontrib>Verheijen, Marcel</creatorcontrib><creatorcontrib>Wondergem, Harry</creatorcontrib><creatorcontrib>van der Sluis, Paul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakkers, Erik P. A. M</au><au>van Dam, Jorden A</au><au>De Franceschi, Silvano</au><au>Kouwenhoven, Leo P</au><au>Kaiser, Monja</au><au>Verheijen, Marcel</au><au>Wondergem, Harry</au><au>van der Sluis, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epitaxial growth of InP nanowires on germanium</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2004-11-01</date><risdate>2004</risdate><volume>3</volume><issue>11</issue><spage>769</spage><epage>773</epage><pages>769-773</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The growth of III-V semiconductors on silicon would allow the integration of their superior (opto-)electronic properties with silicon technology. But fundamental issues such as lattice and thermal expansion mismatch and the formation of antiphase domains have prevented the epitaxial integration of III-V with group IV semiconductors. Here we demonstrate the principle of epitaxial growth of III-V nanowires on a group IV substrate. We have grown InP nanowires on germanium substrates by a vapour-liquid-solid method. Although the crystal lattice mismatch is large (3.7%), the as-grown wires are monocrystalline and virtually free of dislocations. X-ray diffraction unambiguously demonstrates the heteroepitaxial growth of the nanowires. In addition, we show that a low-resistance electrical contact can be obtained between the wires and the substrate.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15475961</pmid><doi>10.1038/nmat1235</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2004-11, Vol.3 (11), p.769-773
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_67024131
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Germanium
Germanium - chemistry
Indium - chemistry
letter
Materials Science
Microscopy, Electron, Scanning
Microscopy, Electron, Transmission
Nanotechnology
Nanowires
Optical and Electronic Materials
Phosphines - chemistry
Scanning electron microscopy
Silicon
Substrates
Thermal expansion
Wire
X-Ray Diffraction
title Epitaxial growth of InP nanowires on germanium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A23%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epitaxial%20growth%20of%20InP%20nanowires%20on%20germanium&rft.jtitle=Nature%20materials&rft.au=Bakkers,%20Erik%20P.%20A.%20M&rft.date=2004-11-01&rft.volume=3&rft.issue=11&rft.spage=769&rft.epage=773&rft.pages=769-773&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat1235&rft_dat=%3Cproquest_cross%3E971582071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222758673&rft_id=info:pmid/15475961&rfr_iscdi=true