Domain-wall superconductivity in superconductor–ferromagnet hybrids
Superconductivity and magnetism are two antagonistic cooperative phenomena, and the intriguing problem of their coexistence has been studied for several decades. Recently, artificial hybrid superconductor–ferromagnet systems have been commonly used as model systems to reveal the interplay between co...
Gespeichert in:
Veröffentlicht in: | Nature materials 2004-11, Vol.3 (11), p.793-798 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 798 |
---|---|
container_issue | 11 |
container_start_page | 793 |
container_title | Nature materials |
container_volume | 3 |
creator | Yang, Zhaorong Lange, Martin Volodin, Alexander Szymczak, Ritta Moshchalkov, Victor V. |
description | Superconductivity and magnetism are two antagonistic cooperative phenomena, and the intriguing problem of their coexistence has been studied for several decades. Recently, artificial hybrid superconductor–ferromagnet systems have been commonly used as model systems to reveal the interplay between competing superconducting and magnetic order parameters, and to verify the existence of new physical phenomena, including the predicted domain-wall superconductivity (DWS). Here we report the experimental observation of DWS in superconductor–ferromagnet hybrids using a niobium film on a BaFe
12
O
19
single crystal. We found that the critical temperature
T
c
of the superconductivity nucleation in niobium increases with increasing field until it reaches the saturation field of BaFe
12
O
19
. In accordance with the field-shift of the maximum value of
T
c
, pronounced hysteresis effects have been found in resistive transitions. We argue that the compensation of the applied field by the stray fields of the magnetic domains as well as the change in the domain structure is responsible for the appearance of the DWS and the coexistence of superconductivity and magnetism in the superconductor–ferromagnet hybrids. |
doi_str_mv | 10.1038/nmat1222 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67024104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>971591461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-43786074aced5ef3f2c8853c50e560bcff6d2644e1df4b321f1d598ed334bc873</originalsourceid><addsrcrecordid>eNqFkc1Kw0AQxxdRbK2CTyDFg-ghut-7HqXWDyh40XNI9qOmJJu6myi5-Q6-oU_ilkaKevA0w8xv_sP8B4BDBM8RJPLCVVmDMMZbYIio4AnlHG73OYqNAdgLYQEhRozxXTBAjHIhMB2C6XVdZYVL3rKyHId2abyqnW5VU7wWTTcu3I9i7T_fP6zxPg7NnWnGz13uCx32wY7NymAO-jgCTzfTx8ldMnu4vZ9czRJFIWsSSoTkUNBMGc2MJRYrKRlRDBrGYa6s5RpzSg3SluYEI4s0u5RGE0JzJQUZgZO17tLXL60JTVoVQZmyzJyp25ByATFFkP4LYomjN1RG8PgXuKhb7-IRafRTMM7ZCjpdQ8rXIXhj06Uvqsx3KYLp6gHp9wMietTrtXll9AbsHY_A2RoIseXmxm8W_hH7AhLpkEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222756658</pqid></control><display><type>article</type><title>Domain-wall superconductivity in superconductor–ferromagnet hybrids</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Yang, Zhaorong ; Lange, Martin ; Volodin, Alexander ; Szymczak, Ritta ; Moshchalkov, Victor V.</creator><creatorcontrib>Yang, Zhaorong ; Lange, Martin ; Volodin, Alexander ; Szymczak, Ritta ; Moshchalkov, Victor V.</creatorcontrib><description>Superconductivity and magnetism are two antagonistic cooperative phenomena, and the intriguing problem of their coexistence has been studied for several decades. Recently, artificial hybrid superconductor–ferromagnet systems have been commonly used as model systems to reveal the interplay between competing superconducting and magnetic order parameters, and to verify the existence of new physical phenomena, including the predicted domain-wall superconductivity (DWS). Here we report the experimental observation of DWS in superconductor–ferromagnet hybrids using a niobium film on a BaFe
12
O
19
single crystal. We found that the critical temperature
T
c
of the superconductivity nucleation in niobium increases with increasing field until it reaches the saturation field of BaFe
12
O
19
. In accordance with the field-shift of the maximum value of
T
c
, pronounced hysteresis effects have been found in resistive transitions. We argue that the compensation of the applied field by the stray fields of the magnetic domains as well as the change in the domain structure is responsible for the appearance of the DWS and the coexistence of superconductivity and magnetism in the superconductor–ferromagnet hybrids.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat1222</identifier><identifier>PMID: 15467724</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Barium Compounds - chemistry ; Biomaterials ; Chemistry and Materials Science ; Compensation ; Condensed Matter Physics ; Electric Conductivity ; Ferric Compounds - chemistry ; Hybrids ; Magnetics ; Magnetism ; Materials Science ; Microscopy ; Molecular beam epitaxy ; Nanotechnology ; Niobium ; Nucleation ; Optical and Electronic Materials ; Oxides - chemistry ; Temperature</subject><ispartof>Nature materials, 2004-11, Vol.3 (11), p.793-798</ispartof><rights>Springer Nature Limited 2004</rights><rights>Copyright Nature Publishing Group Nov 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-43786074aced5ef3f2c8853c50e560bcff6d2644e1df4b321f1d598ed334bc873</citedby><cites>FETCH-LOGICAL-c405t-43786074aced5ef3f2c8853c50e560bcff6d2644e1df4b321f1d598ed334bc873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat1222$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat1222$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15467724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Zhaorong</creatorcontrib><creatorcontrib>Lange, Martin</creatorcontrib><creatorcontrib>Volodin, Alexander</creatorcontrib><creatorcontrib>Szymczak, Ritta</creatorcontrib><creatorcontrib>Moshchalkov, Victor V.</creatorcontrib><title>Domain-wall superconductivity in superconductor–ferromagnet hybrids</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Superconductivity and magnetism are two antagonistic cooperative phenomena, and the intriguing problem of their coexistence has been studied for several decades. Recently, artificial hybrid superconductor–ferromagnet systems have been commonly used as model systems to reveal the interplay between competing superconducting and magnetic order parameters, and to verify the existence of new physical phenomena, including the predicted domain-wall superconductivity (DWS). Here we report the experimental observation of DWS in superconductor–ferromagnet hybrids using a niobium film on a BaFe
12
O
19
single crystal. We found that the critical temperature
T
c
of the superconductivity nucleation in niobium increases with increasing field until it reaches the saturation field of BaFe
12
O
19
. In accordance with the field-shift of the maximum value of
T
c
, pronounced hysteresis effects have been found in resistive transitions. We argue that the compensation of the applied field by the stray fields of the magnetic domains as well as the change in the domain structure is responsible for the appearance of the DWS and the coexistence of superconductivity and magnetism in the superconductor–ferromagnet hybrids.</description><subject>Barium Compounds - chemistry</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Compensation</subject><subject>Condensed Matter Physics</subject><subject>Electric Conductivity</subject><subject>Ferric Compounds - chemistry</subject><subject>Hybrids</subject><subject>Magnetics</subject><subject>Magnetism</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Molecular beam epitaxy</subject><subject>Nanotechnology</subject><subject>Niobium</subject><subject>Nucleation</subject><subject>Optical and Electronic Materials</subject><subject>Oxides - chemistry</subject><subject>Temperature</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc1Kw0AQxxdRbK2CTyDFg-ghut-7HqXWDyh40XNI9qOmJJu6myi5-Q6-oU_ilkaKevA0w8xv_sP8B4BDBM8RJPLCVVmDMMZbYIio4AnlHG73OYqNAdgLYQEhRozxXTBAjHIhMB2C6XVdZYVL3rKyHId2abyqnW5VU7wWTTcu3I9i7T_fP6zxPg7NnWnGz13uCx32wY7NymAO-jgCTzfTx8ldMnu4vZ9czRJFIWsSSoTkUNBMGc2MJRYrKRlRDBrGYa6s5RpzSg3SluYEI4s0u5RGE0JzJQUZgZO17tLXL60JTVoVQZmyzJyp25ByATFFkP4LYomjN1RG8PgXuKhb7-IRafRTMM7ZCjpdQ8rXIXhj06Uvqsx3KYLp6gHp9wMietTrtXll9AbsHY_A2RoIseXmxm8W_hH7AhLpkEc</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Yang, Zhaorong</creator><creator>Lange, Martin</creator><creator>Volodin, Alexander</creator><creator>Szymczak, Ritta</creator><creator>Moshchalkov, Victor V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7QQ</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20041101</creationdate><title>Domain-wall superconductivity in superconductor–ferromagnet hybrids</title><author>Yang, Zhaorong ; Lange, Martin ; Volodin, Alexander ; Szymczak, Ritta ; Moshchalkov, Victor V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-43786074aced5ef3f2c8853c50e560bcff6d2644e1df4b321f1d598ed334bc873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Barium Compounds - chemistry</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Compensation</topic><topic>Condensed Matter Physics</topic><topic>Electric Conductivity</topic><topic>Ferric Compounds - chemistry</topic><topic>Hybrids</topic><topic>Magnetics</topic><topic>Magnetism</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Molecular beam epitaxy</topic><topic>Nanotechnology</topic><topic>Niobium</topic><topic>Nucleation</topic><topic>Optical and Electronic Materials</topic><topic>Oxides - chemistry</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhaorong</creatorcontrib><creatorcontrib>Lange, Martin</creatorcontrib><creatorcontrib>Volodin, Alexander</creatorcontrib><creatorcontrib>Szymczak, Ritta</creatorcontrib><creatorcontrib>Moshchalkov, Victor V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zhaorong</au><au>Lange, Martin</au><au>Volodin, Alexander</au><au>Szymczak, Ritta</au><au>Moshchalkov, Victor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain-wall superconductivity in superconductor–ferromagnet hybrids</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2004-11-01</date><risdate>2004</risdate><volume>3</volume><issue>11</issue><spage>793</spage><epage>798</epage><pages>793-798</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Superconductivity and magnetism are two antagonistic cooperative phenomena, and the intriguing problem of their coexistence has been studied for several decades. Recently, artificial hybrid superconductor–ferromagnet systems have been commonly used as model systems to reveal the interplay between competing superconducting and magnetic order parameters, and to verify the existence of new physical phenomena, including the predicted domain-wall superconductivity (DWS). Here we report the experimental observation of DWS in superconductor–ferromagnet hybrids using a niobium film on a BaFe
12
O
19
single crystal. We found that the critical temperature
T
c
of the superconductivity nucleation in niobium increases with increasing field until it reaches the saturation field of BaFe
12
O
19
. In accordance with the field-shift of the maximum value of
T
c
, pronounced hysteresis effects have been found in resistive transitions. We argue that the compensation of the applied field by the stray fields of the magnetic domains as well as the change in the domain structure is responsible for the appearance of the DWS and the coexistence of superconductivity and magnetism in the superconductor–ferromagnet hybrids.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15467724</pmid><doi>10.1038/nmat1222</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2004-11, Vol.3 (11), p.793-798 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_67024104 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | Barium Compounds - chemistry Biomaterials Chemistry and Materials Science Compensation Condensed Matter Physics Electric Conductivity Ferric Compounds - chemistry Hybrids Magnetics Magnetism Materials Science Microscopy Molecular beam epitaxy Nanotechnology Niobium Nucleation Optical and Electronic Materials Oxides - chemistry Temperature |
title | Domain-wall superconductivity in superconductor–ferromagnet hybrids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A03%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain-wall%20superconductivity%20in%20superconductor%E2%80%93ferromagnet%20hybrids&rft.jtitle=Nature%20materials&rft.au=Yang,%20Zhaorong&rft.date=2004-11-01&rft.volume=3&rft.issue=11&rft.spage=793&rft.epage=798&rft.pages=793-798&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat1222&rft_dat=%3Cproquest_cross%3E971591461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222756658&rft_id=info:pmid/15467724&rfr_iscdi=true |