Domain-wall superconductivity in superconductor–ferromagnet hybrids

Superconductivity and magnetism are two antagonistic cooperative phenomena, and the intriguing problem of their coexistence has been studied for several decades. Recently, artificial hybrid superconductor–ferromagnet systems have been commonly used as model systems to reveal the interplay between co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2004-11, Vol.3 (11), p.793-798
Hauptverfasser: Yang, Zhaorong, Lange, Martin, Volodin, Alexander, Szymczak, Ritta, Moshchalkov, Victor V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 798
container_issue 11
container_start_page 793
container_title Nature materials
container_volume 3
creator Yang, Zhaorong
Lange, Martin
Volodin, Alexander
Szymczak, Ritta
Moshchalkov, Victor V.
description Superconductivity and magnetism are two antagonistic cooperative phenomena, and the intriguing problem of their coexistence has been studied for several decades. Recently, artificial hybrid superconductor–ferromagnet systems have been commonly used as model systems to reveal the interplay between competing superconducting and magnetic order parameters, and to verify the existence of new physical phenomena, including the predicted domain-wall superconductivity (DWS). Here we report the experimental observation of DWS in superconductor–ferromagnet hybrids using a niobium film on a BaFe 12 O 19 single crystal. We found that the critical temperature T c of the superconductivity nucleation in niobium increases with increasing field until it reaches the saturation field of BaFe 12 O 19 . In accordance with the field-shift of the maximum value of T c , pronounced hysteresis effects have been found in resistive transitions. We argue that the compensation of the applied field by the stray fields of the magnetic domains as well as the change in the domain structure is responsible for the appearance of the DWS and the coexistence of superconductivity and magnetism in the superconductor–ferromagnet hybrids.
doi_str_mv 10.1038/nmat1222
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67024104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>971591461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-43786074aced5ef3f2c8853c50e560bcff6d2644e1df4b321f1d598ed334bc873</originalsourceid><addsrcrecordid>eNqFkc1Kw0AQxxdRbK2CTyDFg-ghut-7HqXWDyh40XNI9qOmJJu6myi5-Q6-oU_ilkaKevA0w8xv_sP8B4BDBM8RJPLCVVmDMMZbYIio4AnlHG73OYqNAdgLYQEhRozxXTBAjHIhMB2C6XVdZYVL3rKyHId2abyqnW5VU7wWTTcu3I9i7T_fP6zxPg7NnWnGz13uCx32wY7NymAO-jgCTzfTx8ldMnu4vZ9czRJFIWsSSoTkUNBMGc2MJRYrKRlRDBrGYa6s5RpzSg3SluYEI4s0u5RGE0JzJQUZgZO17tLXL60JTVoVQZmyzJyp25ByATFFkP4LYomjN1RG8PgXuKhb7-IRafRTMM7ZCjpdQ8rXIXhj06Uvqsx3KYLp6gHp9wMietTrtXll9AbsHY_A2RoIseXmxm8W_hH7AhLpkEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222756658</pqid></control><display><type>article</type><title>Domain-wall superconductivity in superconductor–ferromagnet hybrids</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Yang, Zhaorong ; Lange, Martin ; Volodin, Alexander ; Szymczak, Ritta ; Moshchalkov, Victor V.</creator><creatorcontrib>Yang, Zhaorong ; Lange, Martin ; Volodin, Alexander ; Szymczak, Ritta ; Moshchalkov, Victor V.</creatorcontrib><description>Superconductivity and magnetism are two antagonistic cooperative phenomena, and the intriguing problem of their coexistence has been studied for several decades. Recently, artificial hybrid superconductor–ferromagnet systems have been commonly used as model systems to reveal the interplay between competing superconducting and magnetic order parameters, and to verify the existence of new physical phenomena, including the predicted domain-wall superconductivity (DWS). Here we report the experimental observation of DWS in superconductor–ferromagnet hybrids using a niobium film on a BaFe 12 O 19 single crystal. We found that the critical temperature T c of the superconductivity nucleation in niobium increases with increasing field until it reaches the saturation field of BaFe 12 O 19 . In accordance with the field-shift of the maximum value of T c , pronounced hysteresis effects have been found in resistive transitions. We argue that the compensation of the applied field by the stray fields of the magnetic domains as well as the change in the domain structure is responsible for the appearance of the DWS and the coexistence of superconductivity and magnetism in the superconductor–ferromagnet hybrids.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat1222</identifier><identifier>PMID: 15467724</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Barium Compounds - chemistry ; Biomaterials ; Chemistry and Materials Science ; Compensation ; Condensed Matter Physics ; Electric Conductivity ; Ferric Compounds - chemistry ; Hybrids ; Magnetics ; Magnetism ; Materials Science ; Microscopy ; Molecular beam epitaxy ; Nanotechnology ; Niobium ; Nucleation ; Optical and Electronic Materials ; Oxides - chemistry ; Temperature</subject><ispartof>Nature materials, 2004-11, Vol.3 (11), p.793-798</ispartof><rights>Springer Nature Limited 2004</rights><rights>Copyright Nature Publishing Group Nov 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-43786074aced5ef3f2c8853c50e560bcff6d2644e1df4b321f1d598ed334bc873</citedby><cites>FETCH-LOGICAL-c405t-43786074aced5ef3f2c8853c50e560bcff6d2644e1df4b321f1d598ed334bc873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat1222$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat1222$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15467724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Zhaorong</creatorcontrib><creatorcontrib>Lange, Martin</creatorcontrib><creatorcontrib>Volodin, Alexander</creatorcontrib><creatorcontrib>Szymczak, Ritta</creatorcontrib><creatorcontrib>Moshchalkov, Victor V.</creatorcontrib><title>Domain-wall superconductivity in superconductor–ferromagnet hybrids</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Superconductivity and magnetism are two antagonistic cooperative phenomena, and the intriguing problem of their coexistence has been studied for several decades. Recently, artificial hybrid superconductor–ferromagnet systems have been commonly used as model systems to reveal the interplay between competing superconducting and magnetic order parameters, and to verify the existence of new physical phenomena, including the predicted domain-wall superconductivity (DWS). Here we report the experimental observation of DWS in superconductor–ferromagnet hybrids using a niobium film on a BaFe 12 O 19 single crystal. We found that the critical temperature T c of the superconductivity nucleation in niobium increases with increasing field until it reaches the saturation field of BaFe 12 O 19 . In accordance with the field-shift of the maximum value of T c , pronounced hysteresis effects have been found in resistive transitions. We argue that the compensation of the applied field by the stray fields of the magnetic domains as well as the change in the domain structure is responsible for the appearance of the DWS and the coexistence of superconductivity and magnetism in the superconductor–ferromagnet hybrids.</description><subject>Barium Compounds - chemistry</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Compensation</subject><subject>Condensed Matter Physics</subject><subject>Electric Conductivity</subject><subject>Ferric Compounds - chemistry</subject><subject>Hybrids</subject><subject>Magnetics</subject><subject>Magnetism</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Molecular beam epitaxy</subject><subject>Nanotechnology</subject><subject>Niobium</subject><subject>Nucleation</subject><subject>Optical and Electronic Materials</subject><subject>Oxides - chemistry</subject><subject>Temperature</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc1Kw0AQxxdRbK2CTyDFg-ghut-7HqXWDyh40XNI9qOmJJu6myi5-Q6-oU_ilkaKevA0w8xv_sP8B4BDBM8RJPLCVVmDMMZbYIio4AnlHG73OYqNAdgLYQEhRozxXTBAjHIhMB2C6XVdZYVL3rKyHId2abyqnW5VU7wWTTcu3I9i7T_fP6zxPg7NnWnGz13uCx32wY7NymAO-jgCTzfTx8ldMnu4vZ9czRJFIWsSSoTkUNBMGc2MJRYrKRlRDBrGYa6s5RpzSg3SluYEI4s0u5RGE0JzJQUZgZO17tLXL60JTVoVQZmyzJyp25ByATFFkP4LYomjN1RG8PgXuKhb7-IRafRTMM7ZCjpdQ8rXIXhj06Uvqsx3KYLp6gHp9wMietTrtXll9AbsHY_A2RoIseXmxm8W_hH7AhLpkEc</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Yang, Zhaorong</creator><creator>Lange, Martin</creator><creator>Volodin, Alexander</creator><creator>Szymczak, Ritta</creator><creator>Moshchalkov, Victor V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7QQ</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20041101</creationdate><title>Domain-wall superconductivity in superconductor–ferromagnet hybrids</title><author>Yang, Zhaorong ; Lange, Martin ; Volodin, Alexander ; Szymczak, Ritta ; Moshchalkov, Victor V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-43786074aced5ef3f2c8853c50e560bcff6d2644e1df4b321f1d598ed334bc873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Barium Compounds - chemistry</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Compensation</topic><topic>Condensed Matter Physics</topic><topic>Electric Conductivity</topic><topic>Ferric Compounds - chemistry</topic><topic>Hybrids</topic><topic>Magnetics</topic><topic>Magnetism</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Molecular beam epitaxy</topic><topic>Nanotechnology</topic><topic>Niobium</topic><topic>Nucleation</topic><topic>Optical and Electronic Materials</topic><topic>Oxides - chemistry</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhaorong</creatorcontrib><creatorcontrib>Lange, Martin</creatorcontrib><creatorcontrib>Volodin, Alexander</creatorcontrib><creatorcontrib>Szymczak, Ritta</creatorcontrib><creatorcontrib>Moshchalkov, Victor V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zhaorong</au><au>Lange, Martin</au><au>Volodin, Alexander</au><au>Szymczak, Ritta</au><au>Moshchalkov, Victor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain-wall superconductivity in superconductor–ferromagnet hybrids</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2004-11-01</date><risdate>2004</risdate><volume>3</volume><issue>11</issue><spage>793</spage><epage>798</epage><pages>793-798</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Superconductivity and magnetism are two antagonistic cooperative phenomena, and the intriguing problem of their coexistence has been studied for several decades. Recently, artificial hybrid superconductor–ferromagnet systems have been commonly used as model systems to reveal the interplay between competing superconducting and magnetic order parameters, and to verify the existence of new physical phenomena, including the predicted domain-wall superconductivity (DWS). Here we report the experimental observation of DWS in superconductor–ferromagnet hybrids using a niobium film on a BaFe 12 O 19 single crystal. We found that the critical temperature T c of the superconductivity nucleation in niobium increases with increasing field until it reaches the saturation field of BaFe 12 O 19 . In accordance with the field-shift of the maximum value of T c , pronounced hysteresis effects have been found in resistive transitions. We argue that the compensation of the applied field by the stray fields of the magnetic domains as well as the change in the domain structure is responsible for the appearance of the DWS and the coexistence of superconductivity and magnetism in the superconductor–ferromagnet hybrids.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15467724</pmid><doi>10.1038/nmat1222</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2004-11, Vol.3 (11), p.793-798
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_67024104
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects Barium Compounds - chemistry
Biomaterials
Chemistry and Materials Science
Compensation
Condensed Matter Physics
Electric Conductivity
Ferric Compounds - chemistry
Hybrids
Magnetics
Magnetism
Materials Science
Microscopy
Molecular beam epitaxy
Nanotechnology
Niobium
Nucleation
Optical and Electronic Materials
Oxides - chemistry
Temperature
title Domain-wall superconductivity in superconductor–ferromagnet hybrids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A03%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain-wall%20superconductivity%20in%20superconductor%E2%80%93ferromagnet%20hybrids&rft.jtitle=Nature%20materials&rft.au=Yang,%20Zhaorong&rft.date=2004-11-01&rft.volume=3&rft.issue=11&rft.spage=793&rft.epage=798&rft.pages=793-798&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat1222&rft_dat=%3Cproquest_cross%3E971591461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222756658&rft_id=info:pmid/15467724&rfr_iscdi=true