Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
The target of rapamycin (TOR) is a highly conserved protein kinase and a central controller of cell growth. In budding yeast, TOR is found in structurally and functionally distinct protein complexes: TORC1 and TORC2. A mammalian counterpart of TORC1 (mTORC1) has been described, but it is not known w...
Gespeichert in:
Veröffentlicht in: | Nature cell biology 2004-11, Vol.6 (11), p.1122-1128 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1128 |
---|---|
container_issue | 11 |
container_start_page | 1122 |
container_title | Nature cell biology |
container_volume | 6 |
creator | Jacinto, Estela Loewith, Robbie Schmidt, Anja Lin, Shuo Rüegg, Markus A. Hall, Alan Hall, Michael N. |
description | The target of rapamycin (TOR) is a highly conserved protein kinase and a central controller of cell growth. In budding yeast, TOR is found in structurally and functionally distinct protein complexes: TORC1 and TORC2. A mammalian counterpart of TORC1 (mTORC1) has been described, but it is not known whether TORC2 is conserved in mammals. Here, we report that a mammalian counterpart of TORC2 (mTORC2) also exists. mTORC2 contains mTOR, mLST8 and mAVO3, but not raptor. Like yeast TORC2, mTORC2 is rapamycin insensitive and seems to function upstream of Rho GTPases to regulate the actin cytoskeleton. mTORC2 is not upstream of the mTORC1 effector S6K. Thus, two distinct TOR complexes constitute a primordial signalling network conserved in eukaryotic evolution to control the fundamental process of cell growth. |
doi_str_mv | 10.1038/ncb1183 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67023626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183288199</galeid><sourcerecordid>A183288199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-11f4900990f037a1fe923736769866e74e8e2d3e7f328ea435a7ddbd5f6288b03</originalsourceid><addsrcrecordid>eNptkV1rFDEUhoMotlbxH0hQ8ONiar4mmVyW0mqhUqjrdchmTtbUmcw2yUj335tlF8oWyUUOOc95T857EHpLySklvPsa3ZLSjj9Dx1Qo2Qip9PNtLNtGcc2O0Kuc7wihQhD1Eh3RthKKdsdo8cOOox2CjXhxc4vdNK4HeMCsRrGkaci4_AZsXQkRu02Z8h8YoEwR29jjkHGyaztuXM2GmCHmUMJfeI1eeDtkeLO_T9Cvy4vF-ffm-ubb1fnZdeNaIkpDqReaEK2JJ1xZ6kEzrrhUUndSghLQAes5KM9ZB1bw1qq-X_atl6zrloSfoI873XWa7mfIxYwhOxgGG2Gas5GKMC6ZrOD7J-DdNKdY_2YYY1xITboKfdhBKzuACdFPJVm3VTRn1dvakmpdqdP_UPX0MIZqGvhQ3w8KvhwUbI2Fh7Kyc87m6uftIftpx7o05ZzAm3UKo00bQ4nZLtrsF13Jd_uJ5uUI_SO332wFPu-AXFNxBelx5Kda_wAhIqz3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222346908</pqid></control><display><type>article</type><title>Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Jacinto, Estela ; Loewith, Robbie ; Schmidt, Anja ; Lin, Shuo ; Rüegg, Markus A. ; Hall, Alan ; Hall, Michael N.</creator><creatorcontrib>Jacinto, Estela ; Loewith, Robbie ; Schmidt, Anja ; Lin, Shuo ; Rüegg, Markus A. ; Hall, Alan ; Hall, Michael N.</creatorcontrib><description>The target of rapamycin (TOR) is a highly conserved protein kinase and a central controller of cell growth. In budding yeast, TOR is found in structurally and functionally distinct protein complexes: TORC1 and TORC2. A mammalian counterpart of TORC1 (mTORC1) has been described, but it is not known whether TORC2 is conserved in mammals. Here, we report that a mammalian counterpart of TORC2 (mTORC2) also exists. mTORC2 contains mTOR, mLST8 and mAVO3, but not raptor. Like yeast TORC2, mTORC2 is rapamycin insensitive and seems to function upstream of Rho GTPases to regulate the actin cytoskeleton. mTORC2 is not upstream of the mTORC1 effector S6K. Thus, two distinct TOR complexes constitute a primordial signalling network conserved in eukaryotic evolution to control the fundamental process of cell growth.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb1183</identifier><identifier>PMID: 15467718</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Actin ; Actins - physiology ; Amino acids ; Animals ; Biomedical and Life Sciences ; Brewer's yeast ; Cancer Research ; Cell Biology ; Cell Cycle Proteins ; Cell growth ; Cell Line ; Cytoskeleton ; Cytoskeleton - physiology ; Developmental Biology ; Genetic aspects ; Genomes ; Health aspects ; Humans ; Insects ; Kinases ; letter ; Life Sciences ; Mammals ; Mice ; NIH 3T3 Cells ; Phosphatidylinositol 3-Kinases ; Phosphotransferases (Alcohol Group Acceptor) - physiology ; Physiological aspects ; Proteins ; Rapamycin ; Sirolimus - pharmacology ; Stem Cells ; Upstream ; Yeast ; Yeasts</subject><ispartof>Nature cell biology, 2004-11, Vol.6 (11), p.1122-1128</ispartof><rights>Springer Nature Limited 2004</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-11f4900990f037a1fe923736769866e74e8e2d3e7f328ea435a7ddbd5f6288b03</citedby><cites>FETCH-LOGICAL-c504t-11f4900990f037a1fe923736769866e74e8e2d3e7f328ea435a7ddbd5f6288b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb1183$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb1183$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15467718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacinto, Estela</creatorcontrib><creatorcontrib>Loewith, Robbie</creatorcontrib><creatorcontrib>Schmidt, Anja</creatorcontrib><creatorcontrib>Lin, Shuo</creatorcontrib><creatorcontrib>Rüegg, Markus A.</creatorcontrib><creatorcontrib>Hall, Alan</creatorcontrib><creatorcontrib>Hall, Michael N.</creatorcontrib><title>Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>The target of rapamycin (TOR) is a highly conserved protein kinase and a central controller of cell growth. In budding yeast, TOR is found in structurally and functionally distinct protein complexes: TORC1 and TORC2. A mammalian counterpart of TORC1 (mTORC1) has been described, but it is not known whether TORC2 is conserved in mammals. Here, we report that a mammalian counterpart of TORC2 (mTORC2) also exists. mTORC2 contains mTOR, mLST8 and mAVO3, but not raptor. Like yeast TORC2, mTORC2 is rapamycin insensitive and seems to function upstream of Rho GTPases to regulate the actin cytoskeleton. mTORC2 is not upstream of the mTORC1 effector S6K. Thus, two distinct TOR complexes constitute a primordial signalling network conserved in eukaryotic evolution to control the fundamental process of cell growth.</description><subject>Actin</subject><subject>Actins - physiology</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Brewer's yeast</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell Cycle Proteins</subject><subject>Cell growth</subject><subject>Cell Line</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - physiology</subject><subject>Developmental Biology</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Insects</subject><subject>Kinases</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Mammals</subject><subject>Mice</subject><subject>NIH 3T3 Cells</subject><subject>Phosphatidylinositol 3-Kinases</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - physiology</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Rapamycin</subject><subject>Sirolimus - pharmacology</subject><subject>Stem Cells</subject><subject>Upstream</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkV1rFDEUhoMotlbxH0hQ8ONiar4mmVyW0mqhUqjrdchmTtbUmcw2yUj335tlF8oWyUUOOc95T857EHpLySklvPsa3ZLSjj9Dx1Qo2Qip9PNtLNtGcc2O0Kuc7wihQhD1Eh3RthKKdsdo8cOOox2CjXhxc4vdNK4HeMCsRrGkaci4_AZsXQkRu02Z8h8YoEwR29jjkHGyaztuXM2GmCHmUMJfeI1eeDtkeLO_T9Cvy4vF-ffm-ubb1fnZdeNaIkpDqReaEK2JJ1xZ6kEzrrhUUndSghLQAes5KM9ZB1bw1qq-X_atl6zrloSfoI873XWa7mfIxYwhOxgGG2Gas5GKMC6ZrOD7J-DdNKdY_2YYY1xITboKfdhBKzuACdFPJVm3VTRn1dvakmpdqdP_UPX0MIZqGvhQ3w8KvhwUbI2Fh7Kyc87m6uftIftpx7o05ZzAm3UKo00bQ4nZLtrsF13Jd_uJ5uUI_SO332wFPu-AXFNxBelx5Kda_wAhIqz3</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Jacinto, Estela</creator><creator>Loewith, Robbie</creator><creator>Schmidt, Anja</creator><creator>Lin, Shuo</creator><creator>Rüegg, Markus A.</creator><creator>Hall, Alan</creator><creator>Hall, Michael N.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20041101</creationdate><title>Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive</title><author>Jacinto, Estela ; Loewith, Robbie ; Schmidt, Anja ; Lin, Shuo ; Rüegg, Markus A. ; Hall, Alan ; Hall, Michael N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-11f4900990f037a1fe923736769866e74e8e2d3e7f328ea435a7ddbd5f6288b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Actin</topic><topic>Actins - physiology</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Brewer's yeast</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell Cycle Proteins</topic><topic>Cell growth</topic><topic>Cell Line</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - physiology</topic><topic>Developmental Biology</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Insects</topic><topic>Kinases</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Mammals</topic><topic>Mice</topic><topic>NIH 3T3 Cells</topic><topic>Phosphatidylinositol 3-Kinases</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - physiology</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Rapamycin</topic><topic>Sirolimus - pharmacology</topic><topic>Stem Cells</topic><topic>Upstream</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacinto, Estela</creatorcontrib><creatorcontrib>Loewith, Robbie</creatorcontrib><creatorcontrib>Schmidt, Anja</creatorcontrib><creatorcontrib>Lin, Shuo</creatorcontrib><creatorcontrib>Rüegg, Markus A.</creatorcontrib><creatorcontrib>Hall, Alan</creatorcontrib><creatorcontrib>Hall, Michael N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacinto, Estela</au><au>Loewith, Robbie</au><au>Schmidt, Anja</au><au>Lin, Shuo</au><au>Rüegg, Markus A.</au><au>Hall, Alan</au><au>Hall, Michael N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2004-11-01</date><risdate>2004</risdate><volume>6</volume><issue>11</issue><spage>1122</spage><epage>1128</epage><pages>1122-1128</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>The target of rapamycin (TOR) is a highly conserved protein kinase and a central controller of cell growth. In budding yeast, TOR is found in structurally and functionally distinct protein complexes: TORC1 and TORC2. A mammalian counterpart of TORC1 (mTORC1) has been described, but it is not known whether TORC2 is conserved in mammals. Here, we report that a mammalian counterpart of TORC2 (mTORC2) also exists. mTORC2 contains mTOR, mLST8 and mAVO3, but not raptor. Like yeast TORC2, mTORC2 is rapamycin insensitive and seems to function upstream of Rho GTPases to regulate the actin cytoskeleton. mTORC2 is not upstream of the mTORC1 effector S6K. Thus, two distinct TOR complexes constitute a primordial signalling network conserved in eukaryotic evolution to control the fundamental process of cell growth.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15467718</pmid><doi>10.1038/ncb1183</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1465-7392 |
ispartof | Nature cell biology, 2004-11, Vol.6 (11), p.1122-1128 |
issn | 1465-7392 1476-4679 |
language | eng |
recordid | cdi_proquest_miscellaneous_67023626 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | Actin Actins - physiology Amino acids Animals Biomedical and Life Sciences Brewer's yeast Cancer Research Cell Biology Cell Cycle Proteins Cell growth Cell Line Cytoskeleton Cytoskeleton - physiology Developmental Biology Genetic aspects Genomes Health aspects Humans Insects Kinases letter Life Sciences Mammals Mice NIH 3T3 Cells Phosphatidylinositol 3-Kinases Phosphotransferases (Alcohol Group Acceptor) - physiology Physiological aspects Proteins Rapamycin Sirolimus - pharmacology Stem Cells Upstream Yeast Yeasts |
title | Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mammalian%20TOR%20complex%202%20controls%20the%20actin%20cytoskeleton%20and%20is%20rapamycin%20insensitive&rft.jtitle=Nature%20cell%20biology&rft.au=Jacinto,%20Estela&rft.date=2004-11-01&rft.volume=6&rft.issue=11&rft.spage=1122&rft.epage=1128&rft.pages=1122-1128&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb1183&rft_dat=%3Cgale_proqu%3EA183288199%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222346908&rft_id=info:pmid/15467718&rft_galeid=A183288199&rfr_iscdi=true |