Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive

The target of rapamycin (TOR) is a highly conserved protein kinase and a central controller of cell growth. In budding yeast, TOR is found in structurally and functionally distinct protein complexes: TORC1 and TORC2. A mammalian counterpart of TORC1 (mTORC1) has been described, but it is not known w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2004-11, Vol.6 (11), p.1122-1128
Hauptverfasser: Jacinto, Estela, Loewith, Robbie, Schmidt, Anja, Lin, Shuo, Rüegg, Markus A., Hall, Alan, Hall, Michael N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1128
container_issue 11
container_start_page 1122
container_title Nature cell biology
container_volume 6
creator Jacinto, Estela
Loewith, Robbie
Schmidt, Anja
Lin, Shuo
Rüegg, Markus A.
Hall, Alan
Hall, Michael N.
description The target of rapamycin (TOR) is a highly conserved protein kinase and a central controller of cell growth. In budding yeast, TOR is found in structurally and functionally distinct protein complexes: TORC1 and TORC2. A mammalian counterpart of TORC1 (mTORC1) has been described, but it is not known whether TORC2 is conserved in mammals. Here, we report that a mammalian counterpart of TORC2 (mTORC2) also exists. mTORC2 contains mTOR, mLST8 and mAVO3, but not raptor. Like yeast TORC2, mTORC2 is rapamycin insensitive and seems to function upstream of Rho GTPases to regulate the actin cytoskeleton. mTORC2 is not upstream of the mTORC1 effector S6K. Thus, two distinct TOR complexes constitute a primordial signalling network conserved in eukaryotic evolution to control the fundamental process of cell growth.
doi_str_mv 10.1038/ncb1183
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67023626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183288199</galeid><sourcerecordid>A183288199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-11f4900990f037a1fe923736769866e74e8e2d3e7f328ea435a7ddbd5f6288b03</originalsourceid><addsrcrecordid>eNptkV1rFDEUhoMotlbxH0hQ8ONiar4mmVyW0mqhUqjrdchmTtbUmcw2yUj335tlF8oWyUUOOc95T857EHpLySklvPsa3ZLSjj9Dx1Qo2Qip9PNtLNtGcc2O0Kuc7wihQhD1Eh3RthKKdsdo8cOOox2CjXhxc4vdNK4HeMCsRrGkaci4_AZsXQkRu02Z8h8YoEwR29jjkHGyaztuXM2GmCHmUMJfeI1eeDtkeLO_T9Cvy4vF-ffm-ubb1fnZdeNaIkpDqReaEK2JJ1xZ6kEzrrhUUndSghLQAes5KM9ZB1bw1qq-X_atl6zrloSfoI873XWa7mfIxYwhOxgGG2Gas5GKMC6ZrOD7J-DdNKdY_2YYY1xITboKfdhBKzuACdFPJVm3VTRn1dvakmpdqdP_UPX0MIZqGvhQ3w8KvhwUbI2Fh7Kyc87m6uftIftpx7o05ZzAm3UKo00bQ4nZLtrsF13Jd_uJ5uUI_SO332wFPu-AXFNxBelx5Kda_wAhIqz3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222346908</pqid></control><display><type>article</type><title>Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Jacinto, Estela ; Loewith, Robbie ; Schmidt, Anja ; Lin, Shuo ; Rüegg, Markus A. ; Hall, Alan ; Hall, Michael N.</creator><creatorcontrib>Jacinto, Estela ; Loewith, Robbie ; Schmidt, Anja ; Lin, Shuo ; Rüegg, Markus A. ; Hall, Alan ; Hall, Michael N.</creatorcontrib><description>The target of rapamycin (TOR) is a highly conserved protein kinase and a central controller of cell growth. In budding yeast, TOR is found in structurally and functionally distinct protein complexes: TORC1 and TORC2. A mammalian counterpart of TORC1 (mTORC1) has been described, but it is not known whether TORC2 is conserved in mammals. Here, we report that a mammalian counterpart of TORC2 (mTORC2) also exists. mTORC2 contains mTOR, mLST8 and mAVO3, but not raptor. Like yeast TORC2, mTORC2 is rapamycin insensitive and seems to function upstream of Rho GTPases to regulate the actin cytoskeleton. mTORC2 is not upstream of the mTORC1 effector S6K. Thus, two distinct TOR complexes constitute a primordial signalling network conserved in eukaryotic evolution to control the fundamental process of cell growth.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb1183</identifier><identifier>PMID: 15467718</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Actin ; Actins - physiology ; Amino acids ; Animals ; Biomedical and Life Sciences ; Brewer's yeast ; Cancer Research ; Cell Biology ; Cell Cycle Proteins ; Cell growth ; Cell Line ; Cytoskeleton ; Cytoskeleton - physiology ; Developmental Biology ; Genetic aspects ; Genomes ; Health aspects ; Humans ; Insects ; Kinases ; letter ; Life Sciences ; Mammals ; Mice ; NIH 3T3 Cells ; Phosphatidylinositol 3-Kinases ; Phosphotransferases (Alcohol Group Acceptor) - physiology ; Physiological aspects ; Proteins ; Rapamycin ; Sirolimus - pharmacology ; Stem Cells ; Upstream ; Yeast ; Yeasts</subject><ispartof>Nature cell biology, 2004-11, Vol.6 (11), p.1122-1128</ispartof><rights>Springer Nature Limited 2004</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-11f4900990f037a1fe923736769866e74e8e2d3e7f328ea435a7ddbd5f6288b03</citedby><cites>FETCH-LOGICAL-c504t-11f4900990f037a1fe923736769866e74e8e2d3e7f328ea435a7ddbd5f6288b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb1183$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb1183$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15467718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacinto, Estela</creatorcontrib><creatorcontrib>Loewith, Robbie</creatorcontrib><creatorcontrib>Schmidt, Anja</creatorcontrib><creatorcontrib>Lin, Shuo</creatorcontrib><creatorcontrib>Rüegg, Markus A.</creatorcontrib><creatorcontrib>Hall, Alan</creatorcontrib><creatorcontrib>Hall, Michael N.</creatorcontrib><title>Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>The target of rapamycin (TOR) is a highly conserved protein kinase and a central controller of cell growth. In budding yeast, TOR is found in structurally and functionally distinct protein complexes: TORC1 and TORC2. A mammalian counterpart of TORC1 (mTORC1) has been described, but it is not known whether TORC2 is conserved in mammals. Here, we report that a mammalian counterpart of TORC2 (mTORC2) also exists. mTORC2 contains mTOR, mLST8 and mAVO3, but not raptor. Like yeast TORC2, mTORC2 is rapamycin insensitive and seems to function upstream of Rho GTPases to regulate the actin cytoskeleton. mTORC2 is not upstream of the mTORC1 effector S6K. Thus, two distinct TOR complexes constitute a primordial signalling network conserved in eukaryotic evolution to control the fundamental process of cell growth.</description><subject>Actin</subject><subject>Actins - physiology</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Brewer's yeast</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell Cycle Proteins</subject><subject>Cell growth</subject><subject>Cell Line</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - physiology</subject><subject>Developmental Biology</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Insects</subject><subject>Kinases</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Mammals</subject><subject>Mice</subject><subject>NIH 3T3 Cells</subject><subject>Phosphatidylinositol 3-Kinases</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - physiology</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Rapamycin</subject><subject>Sirolimus - pharmacology</subject><subject>Stem Cells</subject><subject>Upstream</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkV1rFDEUhoMotlbxH0hQ8ONiar4mmVyW0mqhUqjrdchmTtbUmcw2yUj335tlF8oWyUUOOc95T857EHpLySklvPsa3ZLSjj9Dx1Qo2Qip9PNtLNtGcc2O0Kuc7wihQhD1Eh3RthKKdsdo8cOOox2CjXhxc4vdNK4HeMCsRrGkaci4_AZsXQkRu02Z8h8YoEwR29jjkHGyaztuXM2GmCHmUMJfeI1eeDtkeLO_T9Cvy4vF-ffm-ubb1fnZdeNaIkpDqReaEK2JJ1xZ6kEzrrhUUndSghLQAes5KM9ZB1bw1qq-X_atl6zrloSfoI873XWa7mfIxYwhOxgGG2Gas5GKMC6ZrOD7J-DdNKdY_2YYY1xITboKfdhBKzuACdFPJVm3VTRn1dvakmpdqdP_UPX0MIZqGvhQ3w8KvhwUbI2Fh7Kyc87m6uftIftpx7o05ZzAm3UKo00bQ4nZLtrsF13Jd_uJ5uUI_SO332wFPu-AXFNxBelx5Kda_wAhIqz3</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Jacinto, Estela</creator><creator>Loewith, Robbie</creator><creator>Schmidt, Anja</creator><creator>Lin, Shuo</creator><creator>Rüegg, Markus A.</creator><creator>Hall, Alan</creator><creator>Hall, Michael N.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20041101</creationdate><title>Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive</title><author>Jacinto, Estela ; Loewith, Robbie ; Schmidt, Anja ; Lin, Shuo ; Rüegg, Markus A. ; Hall, Alan ; Hall, Michael N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-11f4900990f037a1fe923736769866e74e8e2d3e7f328ea435a7ddbd5f6288b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Actin</topic><topic>Actins - physiology</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Brewer's yeast</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell Cycle Proteins</topic><topic>Cell growth</topic><topic>Cell Line</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - physiology</topic><topic>Developmental Biology</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Insects</topic><topic>Kinases</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Mammals</topic><topic>Mice</topic><topic>NIH 3T3 Cells</topic><topic>Phosphatidylinositol 3-Kinases</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - physiology</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Rapamycin</topic><topic>Sirolimus - pharmacology</topic><topic>Stem Cells</topic><topic>Upstream</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacinto, Estela</creatorcontrib><creatorcontrib>Loewith, Robbie</creatorcontrib><creatorcontrib>Schmidt, Anja</creatorcontrib><creatorcontrib>Lin, Shuo</creatorcontrib><creatorcontrib>Rüegg, Markus A.</creatorcontrib><creatorcontrib>Hall, Alan</creatorcontrib><creatorcontrib>Hall, Michael N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacinto, Estela</au><au>Loewith, Robbie</au><au>Schmidt, Anja</au><au>Lin, Shuo</au><au>Rüegg, Markus A.</au><au>Hall, Alan</au><au>Hall, Michael N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2004-11-01</date><risdate>2004</risdate><volume>6</volume><issue>11</issue><spage>1122</spage><epage>1128</epage><pages>1122-1128</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>The target of rapamycin (TOR) is a highly conserved protein kinase and a central controller of cell growth. In budding yeast, TOR is found in structurally and functionally distinct protein complexes: TORC1 and TORC2. A mammalian counterpart of TORC1 (mTORC1) has been described, but it is not known whether TORC2 is conserved in mammals. Here, we report that a mammalian counterpart of TORC2 (mTORC2) also exists. mTORC2 contains mTOR, mLST8 and mAVO3, but not raptor. Like yeast TORC2, mTORC2 is rapamycin insensitive and seems to function upstream of Rho GTPases to regulate the actin cytoskeleton. mTORC2 is not upstream of the mTORC1 effector S6K. Thus, two distinct TOR complexes constitute a primordial signalling network conserved in eukaryotic evolution to control the fundamental process of cell growth.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15467718</pmid><doi>10.1038/ncb1183</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2004-11, Vol.6 (11), p.1122-1128
issn 1465-7392
1476-4679
language eng
recordid cdi_proquest_miscellaneous_67023626
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects Actin
Actins - physiology
Amino acids
Animals
Biomedical and Life Sciences
Brewer's yeast
Cancer Research
Cell Biology
Cell Cycle Proteins
Cell growth
Cell Line
Cytoskeleton
Cytoskeleton - physiology
Developmental Biology
Genetic aspects
Genomes
Health aspects
Humans
Insects
Kinases
letter
Life Sciences
Mammals
Mice
NIH 3T3 Cells
Phosphatidylinositol 3-Kinases
Phosphotransferases (Alcohol Group Acceptor) - physiology
Physiological aspects
Proteins
Rapamycin
Sirolimus - pharmacology
Stem Cells
Upstream
Yeast
Yeasts
title Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mammalian%20TOR%20complex%202%20controls%20the%20actin%20cytoskeleton%20and%20is%20rapamycin%20insensitive&rft.jtitle=Nature%20cell%20biology&rft.au=Jacinto,%20Estela&rft.date=2004-11-01&rft.volume=6&rft.issue=11&rft.spage=1122&rft.epage=1128&rft.pages=1122-1128&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb1183&rft_dat=%3Cgale_proqu%3EA183288199%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222346908&rft_id=info:pmid/15467718&rft_galeid=A183288199&rfr_iscdi=true