New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter
To characterize anisotropic water diffusion in brain white matter, a theoretical framework is proposed that combines hindered and restricted models of water diffusion (CHARMED) and an experimental methodology that embodies features of diffusion tensor and q‐space MRI. This model contains a hindered...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2004-11, Vol.52 (5), p.965-978 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 978 |
---|---|
container_issue | 5 |
container_start_page | 965 |
container_title | Magnetic resonance in medicine |
container_volume | 52 |
creator | Assaf, Yaniv Freidlin, Raisa Z. Rohde, Gustavo K. Basser, Peter J. |
description | To characterize anisotropic water diffusion in brain white matter, a theoretical framework is proposed that combines hindered and restricted models of water diffusion (CHARMED) and an experimental methodology that embodies features of diffusion tensor and q‐space MRI. This model contains a hindered extra‐axonal compartment, whose diffusion properties are characterized by an effective diffusion tensor, and an intra‐axonal compartment, whose diffusion properties are characterized by a restricted model of diffusion within cylinders. The hindered model primarily explains the Gaussian signal attenuation observed at low b values; the restricted non‐Gaussian model does so at high b. Both high and low b data obtained along different directions are required to estimate various microstructural parameters of the composite model, such as the nerve fiber orientation(s), the T2‐weighted extra‐ and intra‐axonal volume fractions, and principal diffusivities. The proposed model provides a description of restricted diffusion in 3D given by a 3D probability distribution (average propagator), which is obtained by 3D Fourier transformation of the estimated signal attenuation profile. The new model is tested using synthetic phantoms and validated on excised spinal cord tissue. This framework shows promise in determining the orientations of two or more fiber compartments more precisely and accurately than with diffusion tensor imaging. Magn Reson Med 52:965–978, 2004. Published 2004 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/mrm.20274 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67023048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17391548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4564-bc9e5bd6903e0c5fa0948d4d25ac955b7145cbfe788f718199ed20693b5651ec3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EokvhwBdAPiFxSDt27Dg-ogqWSm0RqNCj5dgT1jR_FjtRWj497u4CJ8RlfHi_9zSeR8hLBicMgJ_2sT_hwJV4RFZMcl5wqcVjsgIloCiZFkfkWUrfAUBrJZ6SIyYl1KyqV2S-woX2o8cuDN-oHTzFuy3G0OMw2Y620fa4jPGWTiN1Gxutm7L6E-kmDB4j-p0nYppiyJKni80A9aFt5xTGgYaBNtHmuWzChLS3U9afkyet7RK-OLzH5Mv7d9dnH4qLj-vzs7cXhROyEkXjNMrGVxpKBCdbC1rUXngurdNSNooJ6ZoWVV23itVMa_QcKl02spIMXXlMXu9zt3H8MeclTR-Sw66zA45zMpUCXoKo_wsyVWomd-CbPejimFLE1mzzsWy8NwzMQxkml2F2ZWT21SF0bnr0f8nD9TNwugeW0OH9v5PM5efL35HF3hHShHd_HDbe5r-USpqbq7X5-mmt4Ka8Nqz8BYHqpKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17391548</pqid></control><display><type>article</type><title>New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Assaf, Yaniv ; Freidlin, Raisa Z. ; Rohde, Gustavo K. ; Basser, Peter J.</creator><creatorcontrib>Assaf, Yaniv ; Freidlin, Raisa Z. ; Rohde, Gustavo K. ; Basser, Peter J.</creatorcontrib><description>To characterize anisotropic water diffusion in brain white matter, a theoretical framework is proposed that combines hindered and restricted models of water diffusion (CHARMED) and an experimental methodology that embodies features of diffusion tensor and q‐space MRI. This model contains a hindered extra‐axonal compartment, whose diffusion properties are characterized by an effective diffusion tensor, and an intra‐axonal compartment, whose diffusion properties are characterized by a restricted model of diffusion within cylinders. The hindered model primarily explains the Gaussian signal attenuation observed at low b values; the restricted non‐Gaussian model does so at high b. Both high and low b data obtained along different directions are required to estimate various microstructural parameters of the composite model, such as the nerve fiber orientation(s), the T2‐weighted extra‐ and intra‐axonal volume fractions, and principal diffusivities. The proposed model provides a description of restricted diffusion in 3D given by a 3D probability distribution (average propagator), which is obtained by 3D Fourier transformation of the estimated signal attenuation profile. The new model is tested using synthetic phantoms and validated on excised spinal cord tissue. This framework shows promise in determining the orientations of two or more fiber compartments more precisely and accurately than with diffusion tensor imaging. Magn Reson Med 52:965–978, 2004. Published 2004 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.20274</identifier><identifier>PMID: 15508168</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Anisotropy ; Body Water - metabolism ; Diffusion Magnetic Resonance Imaging - methods ; DTI ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional ; In Vitro Techniques ; MRI ; Phantoms, Imaging ; q-space ; Spinal Cord - metabolism ; Swine ; white matter</subject><ispartof>Magnetic resonance in medicine, 2004-11, Vol.52 (5), p.965-978</ispartof><rights>Published 2004 Wiley‐Liss, Inc.</rights><rights>(c) 2004 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4564-bc9e5bd6903e0c5fa0948d4d25ac955b7145cbfe788f718199ed20693b5651ec3</citedby><cites>FETCH-LOGICAL-c4564-bc9e5bd6903e0c5fa0948d4d25ac955b7145cbfe788f718199ed20693b5651ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.20274$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.20274$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15508168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Assaf, Yaniv</creatorcontrib><creatorcontrib>Freidlin, Raisa Z.</creatorcontrib><creatorcontrib>Rohde, Gustavo K.</creatorcontrib><creatorcontrib>Basser, Peter J.</creatorcontrib><title>New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>To characterize anisotropic water diffusion in brain white matter, a theoretical framework is proposed that combines hindered and restricted models of water diffusion (CHARMED) and an experimental methodology that embodies features of diffusion tensor and q‐space MRI. This model contains a hindered extra‐axonal compartment, whose diffusion properties are characterized by an effective diffusion tensor, and an intra‐axonal compartment, whose diffusion properties are characterized by a restricted model of diffusion within cylinders. The hindered model primarily explains the Gaussian signal attenuation observed at low b values; the restricted non‐Gaussian model does so at high b. Both high and low b data obtained along different directions are required to estimate various microstructural parameters of the composite model, such as the nerve fiber orientation(s), the T2‐weighted extra‐ and intra‐axonal volume fractions, and principal diffusivities. The proposed model provides a description of restricted diffusion in 3D given by a 3D probability distribution (average propagator), which is obtained by 3D Fourier transformation of the estimated signal attenuation profile. The new model is tested using synthetic phantoms and validated on excised spinal cord tissue. This framework shows promise in determining the orientations of two or more fiber compartments more precisely and accurately than with diffusion tensor imaging. Magn Reson Med 52:965–978, 2004. Published 2004 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Anisotropy</subject><subject>Body Water - metabolism</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>DTI</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging, Three-Dimensional</subject><subject>In Vitro Techniques</subject><subject>MRI</subject><subject>Phantoms, Imaging</subject><subject>q-space</subject><subject>Spinal Cord - metabolism</subject><subject>Swine</subject><subject>white matter</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS0EokvhwBdAPiFxSDt27Dg-ogqWSm0RqNCj5dgT1jR_FjtRWj497u4CJ8RlfHi_9zSeR8hLBicMgJ_2sT_hwJV4RFZMcl5wqcVjsgIloCiZFkfkWUrfAUBrJZ6SIyYl1KyqV2S-woX2o8cuDN-oHTzFuy3G0OMw2Y620fa4jPGWTiN1Gxutm7L6E-kmDB4j-p0nYppiyJKni80A9aFt5xTGgYaBNtHmuWzChLS3U9afkyet7RK-OLzH5Mv7d9dnH4qLj-vzs7cXhROyEkXjNMrGVxpKBCdbC1rUXngurdNSNooJ6ZoWVV23itVMa_QcKl02spIMXXlMXu9zt3H8MeclTR-Sw66zA45zMpUCXoKo_wsyVWomd-CbPejimFLE1mzzsWy8NwzMQxkml2F2ZWT21SF0bnr0f8nD9TNwugeW0OH9v5PM5efL35HF3hHShHd_HDbe5r-USpqbq7X5-mmt4Ka8Nqz8BYHqpKQ</recordid><startdate>200411</startdate><enddate>200411</enddate><creator>Assaf, Yaniv</creator><creator>Freidlin, Raisa Z.</creator><creator>Rohde, Gustavo K.</creator><creator>Basser, Peter J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200411</creationdate><title>New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter</title><author>Assaf, Yaniv ; Freidlin, Raisa Z. ; Rohde, Gustavo K. ; Basser, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4564-bc9e5bd6903e0c5fa0948d4d25ac955b7145cbfe788f718199ed20693b5651ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Anisotropy</topic><topic>Body Water - metabolism</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>DTI</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging, Three-Dimensional</topic><topic>In Vitro Techniques</topic><topic>MRI</topic><topic>Phantoms, Imaging</topic><topic>q-space</topic><topic>Spinal Cord - metabolism</topic><topic>Swine</topic><topic>white matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Assaf, Yaniv</creatorcontrib><creatorcontrib>Freidlin, Raisa Z.</creatorcontrib><creatorcontrib>Rohde, Gustavo K.</creatorcontrib><creatorcontrib>Basser, Peter J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Assaf, Yaniv</au><au>Freidlin, Raisa Z.</au><au>Rohde, Gustavo K.</au><au>Basser, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2004-11</date><risdate>2004</risdate><volume>52</volume><issue>5</issue><spage>965</spage><epage>978</epage><pages>965-978</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>To characterize anisotropic water diffusion in brain white matter, a theoretical framework is proposed that combines hindered and restricted models of water diffusion (CHARMED) and an experimental methodology that embodies features of diffusion tensor and q‐space MRI. This model contains a hindered extra‐axonal compartment, whose diffusion properties are characterized by an effective diffusion tensor, and an intra‐axonal compartment, whose diffusion properties are characterized by a restricted model of diffusion within cylinders. The hindered model primarily explains the Gaussian signal attenuation observed at low b values; the restricted non‐Gaussian model does so at high b. Both high and low b data obtained along different directions are required to estimate various microstructural parameters of the composite model, such as the nerve fiber orientation(s), the T2‐weighted extra‐ and intra‐axonal volume fractions, and principal diffusivities. The proposed model provides a description of restricted diffusion in 3D given by a 3D probability distribution (average propagator), which is obtained by 3D Fourier transformation of the estimated signal attenuation profile. The new model is tested using synthetic phantoms and validated on excised spinal cord tissue. This framework shows promise in determining the orientations of two or more fiber compartments more precisely and accurately than with diffusion tensor imaging. Magn Reson Med 52:965–978, 2004. Published 2004 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15508168</pmid><doi>10.1002/mrm.20274</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2004-11, Vol.52 (5), p.965-978 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_67023048 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content |
subjects | Animals Anisotropy Body Water - metabolism Diffusion Magnetic Resonance Imaging - methods DTI Image Processing, Computer-Assisted Imaging, Three-Dimensional In Vitro Techniques MRI Phantoms, Imaging q-space Spinal Cord - metabolism Swine white matter |
title | New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20modeling%20and%20experimental%20framework%20to%20characterize%20hindered%20and%20restricted%20water%20diffusion%20in%20brain%20white%20matter&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Assaf,%20Yaniv&rft.date=2004-11&rft.volume=52&rft.issue=5&rft.spage=965&rft.epage=978&rft.pages=965-978&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.20274&rft_dat=%3Cproquest_cross%3E17391548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17391548&rft_id=info:pmid/15508168&rfr_iscdi=true |