New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter

To characterize anisotropic water diffusion in brain white matter, a theoretical framework is proposed that combines hindered and restricted models of water diffusion (CHARMED) and an experimental methodology that embodies features of diffusion tensor and q‐space MRI. This model contains a hindered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2004-11, Vol.52 (5), p.965-978
Hauptverfasser: Assaf, Yaniv, Freidlin, Raisa Z., Rohde, Gustavo K., Basser, Peter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 978
container_issue 5
container_start_page 965
container_title Magnetic resonance in medicine
container_volume 52
creator Assaf, Yaniv
Freidlin, Raisa Z.
Rohde, Gustavo K.
Basser, Peter J.
description To characterize anisotropic water diffusion in brain white matter, a theoretical framework is proposed that combines hindered and restricted models of water diffusion (CHARMED) and an experimental methodology that embodies features of diffusion tensor and q‐space MRI. This model contains a hindered extra‐axonal compartment, whose diffusion properties are characterized by an effective diffusion tensor, and an intra‐axonal compartment, whose diffusion properties are characterized by a restricted model of diffusion within cylinders. The hindered model primarily explains the Gaussian signal attenuation observed at low b values; the restricted non‐Gaussian model does so at high b. Both high and low b data obtained along different directions are required to estimate various microstructural parameters of the composite model, such as the nerve fiber orientation(s), the T2‐weighted extra‐ and intra‐axonal volume fractions, and principal diffusivities. The proposed model provides a description of restricted diffusion in 3D given by a 3D probability distribution (average propagator), which is obtained by 3D Fourier transformation of the estimated signal attenuation profile. The new model is tested using synthetic phantoms and validated on excised spinal cord tissue. This framework shows promise in determining the orientations of two or more fiber compartments more precisely and accurately than with diffusion tensor imaging. Magn Reson Med 52:965–978, 2004. Published 2004 Wiley‐Liss, Inc.
doi_str_mv 10.1002/mrm.20274
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67023048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17391548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4564-bc9e5bd6903e0c5fa0948d4d25ac955b7145cbfe788f718199ed20693b5651ec3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EokvhwBdAPiFxSDt27Dg-ogqWSm0RqNCj5dgT1jR_FjtRWj497u4CJ8RlfHi_9zSeR8hLBicMgJ_2sT_hwJV4RFZMcl5wqcVjsgIloCiZFkfkWUrfAUBrJZ6SIyYl1KyqV2S-woX2o8cuDN-oHTzFuy3G0OMw2Y620fa4jPGWTiN1Gxutm7L6E-kmDB4j-p0nYppiyJKni80A9aFt5xTGgYaBNtHmuWzChLS3U9afkyet7RK-OLzH5Mv7d9dnH4qLj-vzs7cXhROyEkXjNMrGVxpKBCdbC1rUXngurdNSNooJ6ZoWVV23itVMa_QcKl02spIMXXlMXu9zt3H8MeclTR-Sw66zA45zMpUCXoKo_wsyVWomd-CbPejimFLE1mzzsWy8NwzMQxkml2F2ZWT21SF0bnr0f8nD9TNwugeW0OH9v5PM5efL35HF3hHShHd_HDbe5r-USpqbq7X5-mmt4Ka8Nqz8BYHqpKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17391548</pqid></control><display><type>article</type><title>New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Assaf, Yaniv ; Freidlin, Raisa Z. ; Rohde, Gustavo K. ; Basser, Peter J.</creator><creatorcontrib>Assaf, Yaniv ; Freidlin, Raisa Z. ; Rohde, Gustavo K. ; Basser, Peter J.</creatorcontrib><description>To characterize anisotropic water diffusion in brain white matter, a theoretical framework is proposed that combines hindered and restricted models of water diffusion (CHARMED) and an experimental methodology that embodies features of diffusion tensor and q‐space MRI. This model contains a hindered extra‐axonal compartment, whose diffusion properties are characterized by an effective diffusion tensor, and an intra‐axonal compartment, whose diffusion properties are characterized by a restricted model of diffusion within cylinders. The hindered model primarily explains the Gaussian signal attenuation observed at low b values; the restricted non‐Gaussian model does so at high b. Both high and low b data obtained along different directions are required to estimate various microstructural parameters of the composite model, such as the nerve fiber orientation(s), the T2‐weighted extra‐ and intra‐axonal volume fractions, and principal diffusivities. The proposed model provides a description of restricted diffusion in 3D given by a 3D probability distribution (average propagator), which is obtained by 3D Fourier transformation of the estimated signal attenuation profile. The new model is tested using synthetic phantoms and validated on excised spinal cord tissue. This framework shows promise in determining the orientations of two or more fiber compartments more precisely and accurately than with diffusion tensor imaging. Magn Reson Med 52:965–978, 2004. Published 2004 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.20274</identifier><identifier>PMID: 15508168</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Anisotropy ; Body Water - metabolism ; Diffusion Magnetic Resonance Imaging - methods ; DTI ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional ; In Vitro Techniques ; MRI ; Phantoms, Imaging ; q-space ; Spinal Cord - metabolism ; Swine ; white matter</subject><ispartof>Magnetic resonance in medicine, 2004-11, Vol.52 (5), p.965-978</ispartof><rights>Published 2004 Wiley‐Liss, Inc.</rights><rights>(c) 2004 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4564-bc9e5bd6903e0c5fa0948d4d25ac955b7145cbfe788f718199ed20693b5651ec3</citedby><cites>FETCH-LOGICAL-c4564-bc9e5bd6903e0c5fa0948d4d25ac955b7145cbfe788f718199ed20693b5651ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.20274$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.20274$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15508168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Assaf, Yaniv</creatorcontrib><creatorcontrib>Freidlin, Raisa Z.</creatorcontrib><creatorcontrib>Rohde, Gustavo K.</creatorcontrib><creatorcontrib>Basser, Peter J.</creatorcontrib><title>New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>To characterize anisotropic water diffusion in brain white matter, a theoretical framework is proposed that combines hindered and restricted models of water diffusion (CHARMED) and an experimental methodology that embodies features of diffusion tensor and q‐space MRI. This model contains a hindered extra‐axonal compartment, whose diffusion properties are characterized by an effective diffusion tensor, and an intra‐axonal compartment, whose diffusion properties are characterized by a restricted model of diffusion within cylinders. The hindered model primarily explains the Gaussian signal attenuation observed at low b values; the restricted non‐Gaussian model does so at high b. Both high and low b data obtained along different directions are required to estimate various microstructural parameters of the composite model, such as the nerve fiber orientation(s), the T2‐weighted extra‐ and intra‐axonal volume fractions, and principal diffusivities. The proposed model provides a description of restricted diffusion in 3D given by a 3D probability distribution (average propagator), which is obtained by 3D Fourier transformation of the estimated signal attenuation profile. The new model is tested using synthetic phantoms and validated on excised spinal cord tissue. This framework shows promise in determining the orientations of two or more fiber compartments more precisely and accurately than with diffusion tensor imaging. Magn Reson Med 52:965–978, 2004. Published 2004 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Anisotropy</subject><subject>Body Water - metabolism</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>DTI</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging, Three-Dimensional</subject><subject>In Vitro Techniques</subject><subject>MRI</subject><subject>Phantoms, Imaging</subject><subject>q-space</subject><subject>Spinal Cord - metabolism</subject><subject>Swine</subject><subject>white matter</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS0EokvhwBdAPiFxSDt27Dg-ogqWSm0RqNCj5dgT1jR_FjtRWj497u4CJ8RlfHi_9zSeR8hLBicMgJ_2sT_hwJV4RFZMcl5wqcVjsgIloCiZFkfkWUrfAUBrJZ6SIyYl1KyqV2S-woX2o8cuDN-oHTzFuy3G0OMw2Y620fa4jPGWTiN1Gxutm7L6E-kmDB4j-p0nYppiyJKni80A9aFt5xTGgYaBNtHmuWzChLS3U9afkyet7RK-OLzH5Mv7d9dnH4qLj-vzs7cXhROyEkXjNMrGVxpKBCdbC1rUXngurdNSNooJ6ZoWVV23itVMa_QcKl02spIMXXlMXu9zt3H8MeclTR-Sw66zA45zMpUCXoKo_wsyVWomd-CbPejimFLE1mzzsWy8NwzMQxkml2F2ZWT21SF0bnr0f8nD9TNwugeW0OH9v5PM5efL35HF3hHShHd_HDbe5r-USpqbq7X5-mmt4Ka8Nqz8BYHqpKQ</recordid><startdate>200411</startdate><enddate>200411</enddate><creator>Assaf, Yaniv</creator><creator>Freidlin, Raisa Z.</creator><creator>Rohde, Gustavo K.</creator><creator>Basser, Peter J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200411</creationdate><title>New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter</title><author>Assaf, Yaniv ; Freidlin, Raisa Z. ; Rohde, Gustavo K. ; Basser, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4564-bc9e5bd6903e0c5fa0948d4d25ac955b7145cbfe788f718199ed20693b5651ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Anisotropy</topic><topic>Body Water - metabolism</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>DTI</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging, Three-Dimensional</topic><topic>In Vitro Techniques</topic><topic>MRI</topic><topic>Phantoms, Imaging</topic><topic>q-space</topic><topic>Spinal Cord - metabolism</topic><topic>Swine</topic><topic>white matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Assaf, Yaniv</creatorcontrib><creatorcontrib>Freidlin, Raisa Z.</creatorcontrib><creatorcontrib>Rohde, Gustavo K.</creatorcontrib><creatorcontrib>Basser, Peter J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Assaf, Yaniv</au><au>Freidlin, Raisa Z.</au><au>Rohde, Gustavo K.</au><au>Basser, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2004-11</date><risdate>2004</risdate><volume>52</volume><issue>5</issue><spage>965</spage><epage>978</epage><pages>965-978</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>To characterize anisotropic water diffusion in brain white matter, a theoretical framework is proposed that combines hindered and restricted models of water diffusion (CHARMED) and an experimental methodology that embodies features of diffusion tensor and q‐space MRI. This model contains a hindered extra‐axonal compartment, whose diffusion properties are characterized by an effective diffusion tensor, and an intra‐axonal compartment, whose diffusion properties are characterized by a restricted model of diffusion within cylinders. The hindered model primarily explains the Gaussian signal attenuation observed at low b values; the restricted non‐Gaussian model does so at high b. Both high and low b data obtained along different directions are required to estimate various microstructural parameters of the composite model, such as the nerve fiber orientation(s), the T2‐weighted extra‐ and intra‐axonal volume fractions, and principal diffusivities. The proposed model provides a description of restricted diffusion in 3D given by a 3D probability distribution (average propagator), which is obtained by 3D Fourier transformation of the estimated signal attenuation profile. The new model is tested using synthetic phantoms and validated on excised spinal cord tissue. This framework shows promise in determining the orientations of two or more fiber compartments more precisely and accurately than with diffusion tensor imaging. Magn Reson Med 52:965–978, 2004. Published 2004 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15508168</pmid><doi>10.1002/mrm.20274</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2004-11, Vol.52 (5), p.965-978
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_67023048
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content
subjects Animals
Anisotropy
Body Water - metabolism
Diffusion Magnetic Resonance Imaging - methods
DTI
Image Processing, Computer-Assisted
Imaging, Three-Dimensional
In Vitro Techniques
MRI
Phantoms, Imaging
q-space
Spinal Cord - metabolism
Swine
white matter
title New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20modeling%20and%20experimental%20framework%20to%20characterize%20hindered%20and%20restricted%20water%20diffusion%20in%20brain%20white%20matter&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Assaf,%20Yaniv&rft.date=2004-11&rft.volume=52&rft.issue=5&rft.spage=965&rft.epage=978&rft.pages=965-978&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.20274&rft_dat=%3Cproquest_cross%3E17391548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17391548&rft_id=info:pmid/15508168&rfr_iscdi=true