Artificial chromosome formation in maize (Zea mays L.)
We report on the construction of maize minichromosomes using shuttle vectors harboring native centromeric segments, origins of replication, selectable marker genes, and telomeric repeats. These vectors were introduced into scutellar cells of maize immature embryos by microprojectile bombardment. Sev...
Gespeichert in:
Veröffentlicht in: | Chromosoma 2009-04, Vol.118 (2), p.157-177 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | 2 |
container_start_page | 157 |
container_title | Chromosoma |
container_volume | 118 |
creator | Ananiev, Evgueni V Wu, Chengcang Chamberlin, Mark A Svitashev, Sergei Schwartz, Chris Gordon-Kamm, William Tingey, Scott |
description | We report on the construction of maize minichromosomes using shuttle vectors harboring native centromeric segments, origins of replication, selectable marker genes, and telomeric repeats. These vectors were introduced into scutellar cells of maize immature embryos by microprojectile bombardment. Several independent transformation events were identified containing minichromosomes in addition to the normal diploid complement of 20 maize chromosomes. Immunostaining indicated that the minichromosomes recruited centromeric protein C, which is a specific component of the centromere/kinetochore complex. Minichromosomes were estimated to be 15-30 Mb in size based on cytological measurements. Fluorescent in situ hybridization (FISH) showed that minichromosomes contain the centromeric, telomeric, and exogenous unique marker sequences interspersed with maize retrotransposons. Minichromosomes were detected for at least a year in actively dividing callus cultures, providing evidence for their stability through numerous cell cycles. Plants were regenerated and minichromosomes were detected in root tips, providing confirmation of their normal replication and transmission during mitosis and through organogenesis. Assembly of maize artificial chromosomes may provide a tool to study centromere function and a foundation for developing new high capacity vectors for plant functional genomics and breeding. |
doi_str_mv | 10.1007/s00412-008-0191-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67018090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1896001541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-c09dbe8b32aa04050ddef01934b4b879aee7b256b315a0024aa2f0eb00c946943</originalsourceid><addsrcrecordid>eNqFkLtOwzAYRi0EoqXwACwQMSAYUn5f4sRjVXGTKjFAFxbLSZziqonBToby9DhKpUoMMPl2vs_2QegcwxQDpHcegGESA2QxYIFjeoDGmNGwk2X8EI0BQMSJwMkInXi_7peEwzEaYQE4yXg6RnzmWlOZwqhNVHw4W1tvax1V1tWqNbaJTBPVynzr6OZdqzDd-mgxvT1FR5XaeH22Gydo-XD_Nn-KFy-Pz_PZIi4SStu4AFHmOsspUQoYJFCWugpPpSxneZYKpXWak4TnFCcKgDClSAU6BygE44LRCboeej-d_eq0b2VtfKE3G9Vo23nJU8AZCPgXJMCBYto3Xv0C17ZzTfiEJJQFeSxgE4QHqHDWe6cr-elMrdxWYpC9ejmol0G97NVLGjIXu-Iur3W5T-xcB4AMgA9HzUq7_c1_tV4OoUpZqVbOeLl8JYApYA5Jmgn6A_8OlHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>234432431</pqid></control><display><type>article</type><title>Artificial chromosome formation in maize (Zea mays L.)</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Ananiev, Evgueni V ; Wu, Chengcang ; Chamberlin, Mark A ; Svitashev, Sergei ; Schwartz, Chris ; Gordon-Kamm, William ; Tingey, Scott</creator><creatorcontrib>Ananiev, Evgueni V ; Wu, Chengcang ; Chamberlin, Mark A ; Svitashev, Sergei ; Schwartz, Chris ; Gordon-Kamm, William ; Tingey, Scott</creatorcontrib><description>We report on the construction of maize minichromosomes using shuttle vectors harboring native centromeric segments, origins of replication, selectable marker genes, and telomeric repeats. These vectors were introduced into scutellar cells of maize immature embryos by microprojectile bombardment. Several independent transformation events were identified containing minichromosomes in addition to the normal diploid complement of 20 maize chromosomes. Immunostaining indicated that the minichromosomes recruited centromeric protein C, which is a specific component of the centromere/kinetochore complex. Minichromosomes were estimated to be 15-30 Mb in size based on cytological measurements. Fluorescent in situ hybridization (FISH) showed that minichromosomes contain the centromeric, telomeric, and exogenous unique marker sequences interspersed with maize retrotransposons. Minichromosomes were detected for at least a year in actively dividing callus cultures, providing evidence for their stability through numerous cell cycles. Plants were regenerated and minichromosomes were detected in root tips, providing confirmation of their normal replication and transmission during mitosis and through organogenesis. Assembly of maize artificial chromosomes may provide a tool to study centromere function and a foundation for developing new high capacity vectors for plant functional genomics and breeding.</description><identifier>ISSN: 0009-5915</identifier><identifier>EISSN: 1432-0886</identifier><identifier>DOI: 10.1007/s00412-008-0191-3</identifier><identifier>PMID: 19015867</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Amino Acid Sequence ; Animal Genetics and Genomics ; Biochemistry ; Biolistics ; Biomedical and Life Sciences ; Cell Biology ; Centromere - genetics ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomes, Artificial, Bacterial - genetics ; Chromosomes, Plant - genetics ; Developmental Biology ; Eukaryotic Microbiology ; Genes, Plant ; Genetic Markers ; Genetic Vectors ; Human Genetics ; In Situ Hybridization, Fluorescence ; Life Sciences ; Models, Genetic ; Molecular Sequence Data ; Plant Proteins - genetics ; Plants, Genetically Modified ; Research Article ; Zea mays ; Zea mays - genetics ; Zea mays - growth & development</subject><ispartof>Chromosoma, 2009-04, Vol.118 (2), p.157-177</ispartof><rights>The Author(s) 2008</rights><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-c09dbe8b32aa04050ddef01934b4b879aee7b256b315a0024aa2f0eb00c946943</citedby><cites>FETCH-LOGICAL-c533t-c09dbe8b32aa04050ddef01934b4b879aee7b256b315a0024aa2f0eb00c946943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00412-008-0191-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00412-008-0191-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19015867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ananiev, Evgueni V</creatorcontrib><creatorcontrib>Wu, Chengcang</creatorcontrib><creatorcontrib>Chamberlin, Mark A</creatorcontrib><creatorcontrib>Svitashev, Sergei</creatorcontrib><creatorcontrib>Schwartz, Chris</creatorcontrib><creatorcontrib>Gordon-Kamm, William</creatorcontrib><creatorcontrib>Tingey, Scott</creatorcontrib><title>Artificial chromosome formation in maize (Zea mays L.)</title><title>Chromosoma</title><addtitle>Chromosoma</addtitle><addtitle>Chromosoma</addtitle><description>We report on the construction of maize minichromosomes using shuttle vectors harboring native centromeric segments, origins of replication, selectable marker genes, and telomeric repeats. These vectors were introduced into scutellar cells of maize immature embryos by microprojectile bombardment. Several independent transformation events were identified containing minichromosomes in addition to the normal diploid complement of 20 maize chromosomes. Immunostaining indicated that the minichromosomes recruited centromeric protein C, which is a specific component of the centromere/kinetochore complex. Minichromosomes were estimated to be 15-30 Mb in size based on cytological measurements. Fluorescent in situ hybridization (FISH) showed that minichromosomes contain the centromeric, telomeric, and exogenous unique marker sequences interspersed with maize retrotransposons. Minichromosomes were detected for at least a year in actively dividing callus cultures, providing evidence for their stability through numerous cell cycles. Plants were regenerated and minichromosomes were detected in root tips, providing confirmation of their normal replication and transmission during mitosis and through organogenesis. Assembly of maize artificial chromosomes may provide a tool to study centromere function and a foundation for developing new high capacity vectors for plant functional genomics and breeding.</description><subject>Amino Acid Sequence</subject><subject>Animal Genetics and Genomics</subject><subject>Biochemistry</subject><subject>Biolistics</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Centromere - genetics</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomes, Artificial, Bacterial - genetics</subject><subject>Chromosomes, Plant - genetics</subject><subject>Developmental Biology</subject><subject>Eukaryotic Microbiology</subject><subject>Genes, Plant</subject><subject>Genetic Markers</subject><subject>Genetic Vectors</subject><subject>Human Genetics</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Life Sciences</subject><subject>Models, Genetic</subject><subject>Molecular Sequence Data</subject><subject>Plant Proteins - genetics</subject><subject>Plants, Genetically Modified</subject><subject>Research Article</subject><subject>Zea mays</subject><subject>Zea mays - genetics</subject><subject>Zea mays - growth & development</subject><issn>0009-5915</issn><issn>1432-0886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkLtOwzAYRi0EoqXwACwQMSAYUn5f4sRjVXGTKjFAFxbLSZziqonBToby9DhKpUoMMPl2vs_2QegcwxQDpHcegGESA2QxYIFjeoDGmNGwk2X8EI0BQMSJwMkInXi_7peEwzEaYQE4yXg6RnzmWlOZwqhNVHw4W1tvax1V1tWqNbaJTBPVynzr6OZdqzDd-mgxvT1FR5XaeH22Gydo-XD_Nn-KFy-Pz_PZIi4SStu4AFHmOsspUQoYJFCWugpPpSxneZYKpXWak4TnFCcKgDClSAU6BygE44LRCboeej-d_eq0b2VtfKE3G9Vo23nJU8AZCPgXJMCBYto3Xv0C17ZzTfiEJJQFeSxgE4QHqHDWe6cr-elMrdxWYpC9ejmol0G97NVLGjIXu-Iur3W5T-xcB4AMgA9HzUq7_c1_tV4OoUpZqVbOeLl8JYApYA5Jmgn6A_8OlHQ</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Ananiev, Evgueni V</creator><creator>Wu, Chengcang</creator><creator>Chamberlin, Mark A</creator><creator>Svitashev, Sergei</creator><creator>Schwartz, Chris</creator><creator>Gordon-Kamm, William</creator><creator>Tingey, Scott</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090401</creationdate><title>Artificial chromosome formation in maize (Zea mays L.)</title><author>Ananiev, Evgueni V ; Wu, Chengcang ; Chamberlin, Mark A ; Svitashev, Sergei ; Schwartz, Chris ; Gordon-Kamm, William ; Tingey, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-c09dbe8b32aa04050ddef01934b4b879aee7b256b315a0024aa2f0eb00c946943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Animal Genetics and Genomics</topic><topic>Biochemistry</topic><topic>Biolistics</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Centromere - genetics</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomes, Artificial, Bacterial - genetics</topic><topic>Chromosomes, Plant - genetics</topic><topic>Developmental Biology</topic><topic>Eukaryotic Microbiology</topic><topic>Genes, Plant</topic><topic>Genetic Markers</topic><topic>Genetic Vectors</topic><topic>Human Genetics</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Life Sciences</topic><topic>Models, Genetic</topic><topic>Molecular Sequence Data</topic><topic>Plant Proteins - genetics</topic><topic>Plants, Genetically Modified</topic><topic>Research Article</topic><topic>Zea mays</topic><topic>Zea mays - genetics</topic><topic>Zea mays - growth & development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ananiev, Evgueni V</creatorcontrib><creatorcontrib>Wu, Chengcang</creatorcontrib><creatorcontrib>Chamberlin, Mark A</creatorcontrib><creatorcontrib>Svitashev, Sergei</creatorcontrib><creatorcontrib>Schwartz, Chris</creatorcontrib><creatorcontrib>Gordon-Kamm, William</creatorcontrib><creatorcontrib>Tingey, Scott</creatorcontrib><collection>AGRIS</collection><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chromosoma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ananiev, Evgueni V</au><au>Wu, Chengcang</au><au>Chamberlin, Mark A</au><au>Svitashev, Sergei</au><au>Schwartz, Chris</au><au>Gordon-Kamm, William</au><au>Tingey, Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial chromosome formation in maize (Zea mays L.)</atitle><jtitle>Chromosoma</jtitle><stitle>Chromosoma</stitle><addtitle>Chromosoma</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>118</volume><issue>2</issue><spage>157</spage><epage>177</epage><pages>157-177</pages><issn>0009-5915</issn><eissn>1432-0886</eissn><abstract>We report on the construction of maize minichromosomes using shuttle vectors harboring native centromeric segments, origins of replication, selectable marker genes, and telomeric repeats. These vectors were introduced into scutellar cells of maize immature embryos by microprojectile bombardment. Several independent transformation events were identified containing minichromosomes in addition to the normal diploid complement of 20 maize chromosomes. Immunostaining indicated that the minichromosomes recruited centromeric protein C, which is a specific component of the centromere/kinetochore complex. Minichromosomes were estimated to be 15-30 Mb in size based on cytological measurements. Fluorescent in situ hybridization (FISH) showed that minichromosomes contain the centromeric, telomeric, and exogenous unique marker sequences interspersed with maize retrotransposons. Minichromosomes were detected for at least a year in actively dividing callus cultures, providing evidence for their stability through numerous cell cycles. Plants were regenerated and minichromosomes were detected in root tips, providing confirmation of their normal replication and transmission during mitosis and through organogenesis. Assembly of maize artificial chromosomes may provide a tool to study centromere function and a foundation for developing new high capacity vectors for plant functional genomics and breeding.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>19015867</pmid><doi>10.1007/s00412-008-0191-3</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-5915 |
ispartof | Chromosoma, 2009-04, Vol.118 (2), p.157-177 |
issn | 0009-5915 1432-0886 |
language | eng |
recordid | cdi_proquest_miscellaneous_67018090 |
source | MEDLINE; SpringerNature Journals |
subjects | Amino Acid Sequence Animal Genetics and Genomics Biochemistry Biolistics Biomedical and Life Sciences Cell Biology Centromere - genetics Chromosomal Proteins, Non-Histone - genetics Chromosomes, Artificial, Bacterial - genetics Chromosomes, Plant - genetics Developmental Biology Eukaryotic Microbiology Genes, Plant Genetic Markers Genetic Vectors Human Genetics In Situ Hybridization, Fluorescence Life Sciences Models, Genetic Molecular Sequence Data Plant Proteins - genetics Plants, Genetically Modified Research Article Zea mays Zea mays - genetics Zea mays - growth & development |
title | Artificial chromosome formation in maize (Zea mays L.) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20chromosome%20formation%20in%20maize%20(Zea%20mays%20L.)&rft.jtitle=Chromosoma&rft.au=Ananiev,%20Evgueni%20V&rft.date=2009-04-01&rft.volume=118&rft.issue=2&rft.spage=157&rft.epage=177&rft.pages=157-177&rft.issn=0009-5915&rft.eissn=1432-0886&rft_id=info:doi/10.1007/s00412-008-0191-3&rft_dat=%3Cproquest_cross%3E1896001541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=234432431&rft_id=info:pmid/19015867&rfr_iscdi=true |