Artificial chromosome formation in maize (Zea mays L.)

We report on the construction of maize minichromosomes using shuttle vectors harboring native centromeric segments, origins of replication, selectable marker genes, and telomeric repeats. These vectors were introduced into scutellar cells of maize immature embryos by microprojectile bombardment. Sev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chromosoma 2009-04, Vol.118 (2), p.157-177
Hauptverfasser: Ananiev, Evgueni V, Wu, Chengcang, Chamberlin, Mark A, Svitashev, Sergei, Schwartz, Chris, Gordon-Kamm, William, Tingey, Scott
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue 2
container_start_page 157
container_title Chromosoma
container_volume 118
creator Ananiev, Evgueni V
Wu, Chengcang
Chamberlin, Mark A
Svitashev, Sergei
Schwartz, Chris
Gordon-Kamm, William
Tingey, Scott
description We report on the construction of maize minichromosomes using shuttle vectors harboring native centromeric segments, origins of replication, selectable marker genes, and telomeric repeats. These vectors were introduced into scutellar cells of maize immature embryos by microprojectile bombardment. Several independent transformation events were identified containing minichromosomes in addition to the normal diploid complement of 20 maize chromosomes. Immunostaining indicated that the minichromosomes recruited centromeric protein C, which is a specific component of the centromere/kinetochore complex. Minichromosomes were estimated to be 15-30 Mb in size based on cytological measurements. Fluorescent in situ hybridization (FISH) showed that minichromosomes contain the centromeric, telomeric, and exogenous unique marker sequences interspersed with maize retrotransposons. Minichromosomes were detected for at least a year in actively dividing callus cultures, providing evidence for their stability through numerous cell cycles. Plants were regenerated and minichromosomes were detected in root tips, providing confirmation of their normal replication and transmission during mitosis and through organogenesis. Assembly of maize artificial chromosomes may provide a tool to study centromere function and a foundation for developing new high capacity vectors for plant functional genomics and breeding.
doi_str_mv 10.1007/s00412-008-0191-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67018090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1896001541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-c09dbe8b32aa04050ddef01934b4b879aee7b256b315a0024aa2f0eb00c946943</originalsourceid><addsrcrecordid>eNqFkLtOwzAYRi0EoqXwACwQMSAYUn5f4sRjVXGTKjFAFxbLSZziqonBToby9DhKpUoMMPl2vs_2QegcwxQDpHcegGESA2QxYIFjeoDGmNGwk2X8EI0BQMSJwMkInXi_7peEwzEaYQE4yXg6RnzmWlOZwqhNVHw4W1tvax1V1tWqNbaJTBPVynzr6OZdqzDd-mgxvT1FR5XaeH22Gydo-XD_Nn-KFy-Pz_PZIi4SStu4AFHmOsspUQoYJFCWugpPpSxneZYKpXWak4TnFCcKgDClSAU6BygE44LRCboeej-d_eq0b2VtfKE3G9Vo23nJU8AZCPgXJMCBYto3Xv0C17ZzTfiEJJQFeSxgE4QHqHDWe6cr-elMrdxWYpC9ejmol0G97NVLGjIXu-Iur3W5T-xcB4AMgA9HzUq7_c1_tV4OoUpZqVbOeLl8JYApYA5Jmgn6A_8OlHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>234432431</pqid></control><display><type>article</type><title>Artificial chromosome formation in maize (Zea mays L.)</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Ananiev, Evgueni V ; Wu, Chengcang ; Chamberlin, Mark A ; Svitashev, Sergei ; Schwartz, Chris ; Gordon-Kamm, William ; Tingey, Scott</creator><creatorcontrib>Ananiev, Evgueni V ; Wu, Chengcang ; Chamberlin, Mark A ; Svitashev, Sergei ; Schwartz, Chris ; Gordon-Kamm, William ; Tingey, Scott</creatorcontrib><description>We report on the construction of maize minichromosomes using shuttle vectors harboring native centromeric segments, origins of replication, selectable marker genes, and telomeric repeats. These vectors were introduced into scutellar cells of maize immature embryos by microprojectile bombardment. Several independent transformation events were identified containing minichromosomes in addition to the normal diploid complement of 20 maize chromosomes. Immunostaining indicated that the minichromosomes recruited centromeric protein C, which is a specific component of the centromere/kinetochore complex. Minichromosomes were estimated to be 15-30 Mb in size based on cytological measurements. Fluorescent in situ hybridization (FISH) showed that minichromosomes contain the centromeric, telomeric, and exogenous unique marker sequences interspersed with maize retrotransposons. Minichromosomes were detected for at least a year in actively dividing callus cultures, providing evidence for their stability through numerous cell cycles. Plants were regenerated and minichromosomes were detected in root tips, providing confirmation of their normal replication and transmission during mitosis and through organogenesis. Assembly of maize artificial chromosomes may provide a tool to study centromere function and a foundation for developing new high capacity vectors for plant functional genomics and breeding.</description><identifier>ISSN: 0009-5915</identifier><identifier>EISSN: 1432-0886</identifier><identifier>DOI: 10.1007/s00412-008-0191-3</identifier><identifier>PMID: 19015867</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Amino Acid Sequence ; Animal Genetics and Genomics ; Biochemistry ; Biolistics ; Biomedical and Life Sciences ; Cell Biology ; Centromere - genetics ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomes, Artificial, Bacterial - genetics ; Chromosomes, Plant - genetics ; Developmental Biology ; Eukaryotic Microbiology ; Genes, Plant ; Genetic Markers ; Genetic Vectors ; Human Genetics ; In Situ Hybridization, Fluorescence ; Life Sciences ; Models, Genetic ; Molecular Sequence Data ; Plant Proteins - genetics ; Plants, Genetically Modified ; Research Article ; Zea mays ; Zea mays - genetics ; Zea mays - growth &amp; development</subject><ispartof>Chromosoma, 2009-04, Vol.118 (2), p.157-177</ispartof><rights>The Author(s) 2008</rights><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-c09dbe8b32aa04050ddef01934b4b879aee7b256b315a0024aa2f0eb00c946943</citedby><cites>FETCH-LOGICAL-c533t-c09dbe8b32aa04050ddef01934b4b879aee7b256b315a0024aa2f0eb00c946943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00412-008-0191-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00412-008-0191-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19015867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ananiev, Evgueni V</creatorcontrib><creatorcontrib>Wu, Chengcang</creatorcontrib><creatorcontrib>Chamberlin, Mark A</creatorcontrib><creatorcontrib>Svitashev, Sergei</creatorcontrib><creatorcontrib>Schwartz, Chris</creatorcontrib><creatorcontrib>Gordon-Kamm, William</creatorcontrib><creatorcontrib>Tingey, Scott</creatorcontrib><title>Artificial chromosome formation in maize (Zea mays L.)</title><title>Chromosoma</title><addtitle>Chromosoma</addtitle><addtitle>Chromosoma</addtitle><description>We report on the construction of maize minichromosomes using shuttle vectors harboring native centromeric segments, origins of replication, selectable marker genes, and telomeric repeats. These vectors were introduced into scutellar cells of maize immature embryos by microprojectile bombardment. Several independent transformation events were identified containing minichromosomes in addition to the normal diploid complement of 20 maize chromosomes. Immunostaining indicated that the minichromosomes recruited centromeric protein C, which is a specific component of the centromere/kinetochore complex. Minichromosomes were estimated to be 15-30 Mb in size based on cytological measurements. Fluorescent in situ hybridization (FISH) showed that minichromosomes contain the centromeric, telomeric, and exogenous unique marker sequences interspersed with maize retrotransposons. Minichromosomes were detected for at least a year in actively dividing callus cultures, providing evidence for their stability through numerous cell cycles. Plants were regenerated and minichromosomes were detected in root tips, providing confirmation of their normal replication and transmission during mitosis and through organogenesis. Assembly of maize artificial chromosomes may provide a tool to study centromere function and a foundation for developing new high capacity vectors for plant functional genomics and breeding.</description><subject>Amino Acid Sequence</subject><subject>Animal Genetics and Genomics</subject><subject>Biochemistry</subject><subject>Biolistics</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Centromere - genetics</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomes, Artificial, Bacterial - genetics</subject><subject>Chromosomes, Plant - genetics</subject><subject>Developmental Biology</subject><subject>Eukaryotic Microbiology</subject><subject>Genes, Plant</subject><subject>Genetic Markers</subject><subject>Genetic Vectors</subject><subject>Human Genetics</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Life Sciences</subject><subject>Models, Genetic</subject><subject>Molecular Sequence Data</subject><subject>Plant Proteins - genetics</subject><subject>Plants, Genetically Modified</subject><subject>Research Article</subject><subject>Zea mays</subject><subject>Zea mays - genetics</subject><subject>Zea mays - growth &amp; development</subject><issn>0009-5915</issn><issn>1432-0886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkLtOwzAYRi0EoqXwACwQMSAYUn5f4sRjVXGTKjFAFxbLSZziqonBToby9DhKpUoMMPl2vs_2QegcwxQDpHcegGESA2QxYIFjeoDGmNGwk2X8EI0BQMSJwMkInXi_7peEwzEaYQE4yXg6RnzmWlOZwqhNVHw4W1tvax1V1tWqNbaJTBPVynzr6OZdqzDd-mgxvT1FR5XaeH22Gydo-XD_Nn-KFy-Pz_PZIi4SStu4AFHmOsspUQoYJFCWugpPpSxneZYKpXWak4TnFCcKgDClSAU6BygE44LRCboeej-d_eq0b2VtfKE3G9Vo23nJU8AZCPgXJMCBYto3Xv0C17ZzTfiEJJQFeSxgE4QHqHDWe6cr-elMrdxWYpC9ejmol0G97NVLGjIXu-Iur3W5T-xcB4AMgA9HzUq7_c1_tV4OoUpZqVbOeLl8JYApYA5Jmgn6A_8OlHQ</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Ananiev, Evgueni V</creator><creator>Wu, Chengcang</creator><creator>Chamberlin, Mark A</creator><creator>Svitashev, Sergei</creator><creator>Schwartz, Chris</creator><creator>Gordon-Kamm, William</creator><creator>Tingey, Scott</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090401</creationdate><title>Artificial chromosome formation in maize (Zea mays L.)</title><author>Ananiev, Evgueni V ; Wu, Chengcang ; Chamberlin, Mark A ; Svitashev, Sergei ; Schwartz, Chris ; Gordon-Kamm, William ; Tingey, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-c09dbe8b32aa04050ddef01934b4b879aee7b256b315a0024aa2f0eb00c946943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Animal Genetics and Genomics</topic><topic>Biochemistry</topic><topic>Biolistics</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Centromere - genetics</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomes, Artificial, Bacterial - genetics</topic><topic>Chromosomes, Plant - genetics</topic><topic>Developmental Biology</topic><topic>Eukaryotic Microbiology</topic><topic>Genes, Plant</topic><topic>Genetic Markers</topic><topic>Genetic Vectors</topic><topic>Human Genetics</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Life Sciences</topic><topic>Models, Genetic</topic><topic>Molecular Sequence Data</topic><topic>Plant Proteins - genetics</topic><topic>Plants, Genetically Modified</topic><topic>Research Article</topic><topic>Zea mays</topic><topic>Zea mays - genetics</topic><topic>Zea mays - growth &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ananiev, Evgueni V</creatorcontrib><creatorcontrib>Wu, Chengcang</creatorcontrib><creatorcontrib>Chamberlin, Mark A</creatorcontrib><creatorcontrib>Svitashev, Sergei</creatorcontrib><creatorcontrib>Schwartz, Chris</creatorcontrib><creatorcontrib>Gordon-Kamm, William</creatorcontrib><creatorcontrib>Tingey, Scott</creatorcontrib><collection>AGRIS</collection><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chromosoma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ananiev, Evgueni V</au><au>Wu, Chengcang</au><au>Chamberlin, Mark A</au><au>Svitashev, Sergei</au><au>Schwartz, Chris</au><au>Gordon-Kamm, William</au><au>Tingey, Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial chromosome formation in maize (Zea mays L.)</atitle><jtitle>Chromosoma</jtitle><stitle>Chromosoma</stitle><addtitle>Chromosoma</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>118</volume><issue>2</issue><spage>157</spage><epage>177</epage><pages>157-177</pages><issn>0009-5915</issn><eissn>1432-0886</eissn><abstract>We report on the construction of maize minichromosomes using shuttle vectors harboring native centromeric segments, origins of replication, selectable marker genes, and telomeric repeats. These vectors were introduced into scutellar cells of maize immature embryos by microprojectile bombardment. Several independent transformation events were identified containing minichromosomes in addition to the normal diploid complement of 20 maize chromosomes. Immunostaining indicated that the minichromosomes recruited centromeric protein C, which is a specific component of the centromere/kinetochore complex. Minichromosomes were estimated to be 15-30 Mb in size based on cytological measurements. Fluorescent in situ hybridization (FISH) showed that minichromosomes contain the centromeric, telomeric, and exogenous unique marker sequences interspersed with maize retrotransposons. Minichromosomes were detected for at least a year in actively dividing callus cultures, providing evidence for their stability through numerous cell cycles. Plants were regenerated and minichromosomes were detected in root tips, providing confirmation of their normal replication and transmission during mitosis and through organogenesis. Assembly of maize artificial chromosomes may provide a tool to study centromere function and a foundation for developing new high capacity vectors for plant functional genomics and breeding.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>19015867</pmid><doi>10.1007/s00412-008-0191-3</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-5915
ispartof Chromosoma, 2009-04, Vol.118 (2), p.157-177
issn 0009-5915
1432-0886
language eng
recordid cdi_proquest_miscellaneous_67018090
source MEDLINE; SpringerNature Journals
subjects Amino Acid Sequence
Animal Genetics and Genomics
Biochemistry
Biolistics
Biomedical and Life Sciences
Cell Biology
Centromere - genetics
Chromosomal Proteins, Non-Histone - genetics
Chromosomes, Artificial, Bacterial - genetics
Chromosomes, Plant - genetics
Developmental Biology
Eukaryotic Microbiology
Genes, Plant
Genetic Markers
Genetic Vectors
Human Genetics
In Situ Hybridization, Fluorescence
Life Sciences
Models, Genetic
Molecular Sequence Data
Plant Proteins - genetics
Plants, Genetically Modified
Research Article
Zea mays
Zea mays - genetics
Zea mays - growth & development
title Artificial chromosome formation in maize (Zea mays L.)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20chromosome%20formation%20in%20maize%20(Zea%20mays%20L.)&rft.jtitle=Chromosoma&rft.au=Ananiev,%20Evgueni%20V&rft.date=2009-04-01&rft.volume=118&rft.issue=2&rft.spage=157&rft.epage=177&rft.pages=157-177&rft.issn=0009-5915&rft.eissn=1432-0886&rft_id=info:doi/10.1007/s00412-008-0191-3&rft_dat=%3Cproquest_cross%3E1896001541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=234432431&rft_id=info:pmid/19015867&rfr_iscdi=true