Modelling functional integration: a comparison of structural equation and dynamic causal models
The brain appears to adhere to two fundamental principles of functional organisation, functional integration and functional specialisation, where the integration within and among specialised areas is mediated by effective connectivity. In this paper, we review two different approaches to modelling e...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2004, Vol.23, p.S264-S274 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S274 |
---|---|
container_issue | |
container_start_page | S264 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 23 |
creator | Penny, W.D. Stephan, K.E. Mechelli, A. Friston, K.J. |
description | The brain appears to adhere to two fundamental principles of functional organisation, functional integration and functional specialisation, where the integration within and among specialised areas is mediated by effective connectivity. In this paper, we review two different approaches to modelling effective connectivity from fMRI data, structural equation models (SEMs) and dynamic causal models (DCMs). In common to both approaches are model comparison frameworks in which inferences can be made about effective connectivity per se and about how that connectivity can be changed by perceptual or cognitive set. Underlying the two approaches, however, are two very different generative models. In DCM, a distinction is made between the ‘neuronal level’ and the ‘hemodynamic level’. Experimental inputs cause changes in effective connectivity expressed at the level of neurodynamics, which in turn cause changes in the observed hemodynamics. In SEM, changes in effective connectivity lead directly to changes in the covariance structure of the observed hemodynamics. Because changes in effective connectivity in the brain occur at a neuronal level DCM is the preferred model for fMRI data. This review focuses on the underlying assumptions and limitations of each model and demonstrates their application to data from a study of attention to visual motion. |
doi_str_mv | 10.1016/j.neuroimage.2004.07.041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67003572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811904003891</els_id><sourcerecordid>67003572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-723762b08bbd4091243d9de78a00846d745385a16480a39c11fc0d09016324913</originalsourceid><addsrcrecordid>eNqFkUFvGyEQhVGVqnbc_oUKqVJuuxl22QV6a6K0ieSql_aMMLAWlhdsWCL534etLUXKJSdAfPNm5j2EMIGaAOlvd7W3OQY3qq2tGwBaA6uBkg9oSUB0lehYczXfu7bihIgFuk5pBwCCUP4JLUjXQQH7JZK_g7H7vfNbPGSvJxe82mPnJ7uNan59xwrrMB5UdCl4HAacppj1lGPh7DH_h7DyBpuTV6PTWKucyt84C6fP6OOg9sl-uZwr9O_nw9_7x2r959fT_Y91pSnlU8WalvXNBvhmY2iZsqGtEcYyrgA47Q2jXcs7RXrKQbVCEzJoMCCKGW1DBWlX6Oase4jhmG2a5OiSLpspb0NOsmcAbXGlgN_egLuQY1k6SdIBI0IUxULxM6VjSCnaQR5icTueJAE5RyB38jUCOUcggckSQSn9emmQN6M1r4UXzwtwdwaKPfbZ2SiTdtZra1y0epImuPe7vAAaAJwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507199632</pqid></control><display><type>article</type><title>Modelling functional integration: a comparison of structural equation and dynamic causal models</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Penny, W.D. ; Stephan, K.E. ; Mechelli, A. ; Friston, K.J.</creator><creatorcontrib>Penny, W.D. ; Stephan, K.E. ; Mechelli, A. ; Friston, K.J.</creatorcontrib><description>The brain appears to adhere to two fundamental principles of functional organisation, functional integration and functional specialisation, where the integration within and among specialised areas is mediated by effective connectivity. In this paper, we review two different approaches to modelling effective connectivity from fMRI data, structural equation models (SEMs) and dynamic causal models (DCMs). In common to both approaches are model comparison frameworks in which inferences can be made about effective connectivity per se and about how that connectivity can be changed by perceptual or cognitive set. Underlying the two approaches, however, are two very different generative models. In DCM, a distinction is made between the ‘neuronal level’ and the ‘hemodynamic level’. Experimental inputs cause changes in effective connectivity expressed at the level of neurodynamics, which in turn cause changes in the observed hemodynamics. In SEM, changes in effective connectivity lead directly to changes in the covariance structure of the observed hemodynamics. Because changes in effective connectivity in the brain occur at a neuronal level DCM is the preferred model for fMRI data. This review focuses on the underlying assumptions and limitations of each model and demonstrates their application to data from a study of attention to visual motion.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2004.07.041</identifier><identifier>PMID: 15501096</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Attention - physiology ; Bayes Theorem ; Brain ; Brain Mapping ; Dynamic causal model ; Functional integration ; Humans ; Magnetic Resonance Imaging ; Medical imaging ; Models, Neurological ; Models, Statistical ; Neurosciences ; Oxygen - blood ; Parameter estimation ; Principal Component Analysis ; Principal components analysis ; Structural equation ; Studies ; Visual Perception - physiology</subject><ispartof>NeuroImage (Orlando, Fla.), 2004, Vol.23, p.S264-S274</ispartof><rights>2004 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Jan 1, 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-723762b08bbd4091243d9de78a00846d745385a16480a39c11fc0d09016324913</citedby><cites>FETCH-LOGICAL-c448t-723762b08bbd4091243d9de78a00846d745385a16480a39c11fc0d09016324913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1507199632?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3536,4009,27902,27903,27904,45974,64362,64364,64366,72216</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15501096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Penny, W.D.</creatorcontrib><creatorcontrib>Stephan, K.E.</creatorcontrib><creatorcontrib>Mechelli, A.</creatorcontrib><creatorcontrib>Friston, K.J.</creatorcontrib><title>Modelling functional integration: a comparison of structural equation and dynamic causal models</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>The brain appears to adhere to two fundamental principles of functional organisation, functional integration and functional specialisation, where the integration within and among specialised areas is mediated by effective connectivity. In this paper, we review two different approaches to modelling effective connectivity from fMRI data, structural equation models (SEMs) and dynamic causal models (DCMs). In common to both approaches are model comparison frameworks in which inferences can be made about effective connectivity per se and about how that connectivity can be changed by perceptual or cognitive set. Underlying the two approaches, however, are two very different generative models. In DCM, a distinction is made between the ‘neuronal level’ and the ‘hemodynamic level’. Experimental inputs cause changes in effective connectivity expressed at the level of neurodynamics, which in turn cause changes in the observed hemodynamics. In SEM, changes in effective connectivity lead directly to changes in the covariance structure of the observed hemodynamics. Because changes in effective connectivity in the brain occur at a neuronal level DCM is the preferred model for fMRI data. This review focuses on the underlying assumptions and limitations of each model and demonstrates their application to data from a study of attention to visual motion.</description><subject>Algorithms</subject><subject>Attention - physiology</subject><subject>Bayes Theorem</subject><subject>Brain</subject><subject>Brain Mapping</subject><subject>Dynamic causal model</subject><subject>Functional integration</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical imaging</subject><subject>Models, Neurological</subject><subject>Models, Statistical</subject><subject>Neurosciences</subject><subject>Oxygen - blood</subject><subject>Parameter estimation</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Structural equation</subject><subject>Studies</subject><subject>Visual Perception - physiology</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUFvGyEQhVGVqnbc_oUKqVJuuxl22QV6a6K0ieSql_aMMLAWlhdsWCL534etLUXKJSdAfPNm5j2EMIGaAOlvd7W3OQY3qq2tGwBaA6uBkg9oSUB0lehYczXfu7bihIgFuk5pBwCCUP4JLUjXQQH7JZK_g7H7vfNbPGSvJxe82mPnJ7uNan59xwrrMB5UdCl4HAacppj1lGPh7DH_h7DyBpuTV6PTWKucyt84C6fP6OOg9sl-uZwr9O_nw9_7x2r959fT_Y91pSnlU8WalvXNBvhmY2iZsqGtEcYyrgA47Q2jXcs7RXrKQbVCEzJoMCCKGW1DBWlX6Oase4jhmG2a5OiSLpspb0NOsmcAbXGlgN_egLuQY1k6SdIBI0IUxULxM6VjSCnaQR5icTueJAE5RyB38jUCOUcggckSQSn9emmQN6M1r4UXzwtwdwaKPfbZ2SiTdtZra1y0epImuPe7vAAaAJwo</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Penny, W.D.</creator><creator>Stephan, K.E.</creator><creator>Mechelli, A.</creator><creator>Friston, K.J.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2004</creationdate><title>Modelling functional integration: a comparison of structural equation and dynamic causal models</title><author>Penny, W.D. ; Stephan, K.E. ; Mechelli, A. ; Friston, K.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-723762b08bbd4091243d9de78a00846d745385a16480a39c11fc0d09016324913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Attention - physiology</topic><topic>Bayes Theorem</topic><topic>Brain</topic><topic>Brain Mapping</topic><topic>Dynamic causal model</topic><topic>Functional integration</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical imaging</topic><topic>Models, Neurological</topic><topic>Models, Statistical</topic><topic>Neurosciences</topic><topic>Oxygen - blood</topic><topic>Parameter estimation</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Structural equation</topic><topic>Studies</topic><topic>Visual Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penny, W.D.</creatorcontrib><creatorcontrib>Stephan, K.E.</creatorcontrib><creatorcontrib>Mechelli, A.</creatorcontrib><creatorcontrib>Friston, K.J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penny, W.D.</au><au>Stephan, K.E.</au><au>Mechelli, A.</au><au>Friston, K.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling functional integration: a comparison of structural equation and dynamic causal models</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2004</date><risdate>2004</risdate><volume>23</volume><spage>S264</spage><epage>S274</epage><pages>S264-S274</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>The brain appears to adhere to two fundamental principles of functional organisation, functional integration and functional specialisation, where the integration within and among specialised areas is mediated by effective connectivity. In this paper, we review two different approaches to modelling effective connectivity from fMRI data, structural equation models (SEMs) and dynamic causal models (DCMs). In common to both approaches are model comparison frameworks in which inferences can be made about effective connectivity per se and about how that connectivity can be changed by perceptual or cognitive set. Underlying the two approaches, however, are two very different generative models. In DCM, a distinction is made between the ‘neuronal level’ and the ‘hemodynamic level’. Experimental inputs cause changes in effective connectivity expressed at the level of neurodynamics, which in turn cause changes in the observed hemodynamics. In SEM, changes in effective connectivity lead directly to changes in the covariance structure of the observed hemodynamics. Because changes in effective connectivity in the brain occur at a neuronal level DCM is the preferred model for fMRI data. This review focuses on the underlying assumptions and limitations of each model and demonstrates their application to data from a study of attention to visual motion.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15501096</pmid><doi>10.1016/j.neuroimage.2004.07.041</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2004, Vol.23, p.S264-S274 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_67003572 |
source | MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland |
subjects | Algorithms Attention - physiology Bayes Theorem Brain Brain Mapping Dynamic causal model Functional integration Humans Magnetic Resonance Imaging Medical imaging Models, Neurological Models, Statistical Neurosciences Oxygen - blood Parameter estimation Principal Component Analysis Principal components analysis Structural equation Studies Visual Perception - physiology |
title | Modelling functional integration: a comparison of structural equation and dynamic causal models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20functional%20integration:%20a%20comparison%20of%20structural%20equation%20and%20dynamic%20causal%20models&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Penny,%20W.D.&rft.date=2004&rft.volume=23&rft.spage=S264&rft.epage=S274&rft.pages=S264-S274&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2004.07.041&rft_dat=%3Cproquest_cross%3E67003572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507199632&rft_id=info:pmid/15501096&rft_els_id=S1053811904003891&rfr_iscdi=true |