Microfabricated platform for studying stem cell fates
Platforms that allow parallel, quantitative analysis of single cells will be integral to realizing the potential of postgenomic biology. In stem cell biology, the study of clonal stem cells in multiwell formats is currently both inefficient and time‐consuming. Thus, to investigate low‐frequency even...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2004-11, Vol.88 (3), p.399-415 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 415 |
---|---|
container_issue | 3 |
container_start_page | 399 |
container_title | Biotechnology and bioengineering |
container_volume | 88 |
creator | Chin, Vicki I. Taupin, Philippe Sanga, Sandeep Scheel, John Gage, Fred H. Bhatia, Sangeeta N. |
description | Platforms that allow parallel, quantitative analysis of single cells will be integral to realizing the potential of postgenomic biology. In stem cell biology, the study of clonal stem cells in multiwell formats is currently both inefficient and time‐consuming. Thus, to investigate low‐frequency events of interest, large sample sizes must be interrogated. We report a simple, versatile, and efficient micropatterned arraying system conducive to the culture and dynamic monitoring of stem cell proliferation. This platform enables: 1) parallel, automated, long‐term (∼days to weeks), live‐cell microscopy of single cells in culture; 2) tracking of individual cell fates over time (proliferation, apoptosis); and 3) correlation of differentiated progeny with founder clones. To achieve these goals, we used microfabrication techniques to create an array of ∼10,000 microwells on a glass coverslip. The dimensions of the wells are tunable, ranging from 20 to >500 μm in diameter and 10–500 μm in height. The microarray can be coated with adhesive proteins and is integrated into a culture chamber that permits rapid (∼min), addressable monitoring of each well using a standard programmable microscope stage. All cells share the same media (including paracrine survival signals), as opposed to cells in multiwell formats. The incorporation of a coverslip as a substrate also renders the platform compatible with conventional, high‐magnification light and fluorescent microscopy. We validated this approach by analyzing the proliferation dynamics of a heterogeneous adult rat neural stem cell population. Using this platform, one can further interrogate the response of distinct stem cell subpopulations to microenvironmental cues (mitogens, cell–cell interactions, and cell–extracellular matrix interactions) that govern their behavior. In the future, the platform may also be adapted for the study of other cell types by tailoring the surface coatings, microwell dimensions, and culture environment, thereby enabling parallel investigation of many distinct cellular responses. © 2004 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/bit.20254 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67001600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67001600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5134-8e0097f79f2a80fefb8e72fba0b8fcc49539cff9f16291f4d36ed085363eb43a3</originalsourceid><addsrcrecordid>eNqF0VtLHDEUB_BQKrq1PvQLlKHQgg-jJ_fksZW6CtoLbCn0JWQyiURndrbJDHW_vdHdKgilL7nA75wk_yD0BsMRBiDHTRyPCBDOXqAZBi1rIBpeohkAiJpyTfbQq5yvy1YqIXbRHuZMCc3EDPHL6NIQbJOis6Nvq1VnxzCkvipDlcepXcflVVn4vnK-66pQVH6NdoLtsj_Yzvvox-nnxclZffF1fn7y8aJ2HFNWKw_lNkHqQKyC4EOjvCShsdCo4BzTnGoXgg5YEI0Da6nwLShOBfUNo5buow-bvqs0_J58Hk0f8_017NIPUzZCAmAB8F9IQElFCCvw3TN4PUxpWR5hCKZSCM5EQYcbVKLJOflgVin2Nq0NBnOfuCmJm4fEi327bTg1vW-f5DbiAt5vgc3OdiHZpYv5yQlCFdGyuOON-xM7v_73iebT-eLv0fWmIpbvuX2ssOmmBEMlNz-_zA35ji9PF7_m5hu9A59VpPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213766546</pqid></control><display><type>article</type><title>Microfabricated platform for studying stem cell fates</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Chin, Vicki I. ; Taupin, Philippe ; Sanga, Sandeep ; Scheel, John ; Gage, Fred H. ; Bhatia, Sangeeta N.</creator><creatorcontrib>Chin, Vicki I. ; Taupin, Philippe ; Sanga, Sandeep ; Scheel, John ; Gage, Fred H. ; Bhatia, Sangeeta N.</creatorcontrib><description>Platforms that allow parallel, quantitative analysis of single cells will be integral to realizing the potential of postgenomic biology. In stem cell biology, the study of clonal stem cells in multiwell formats is currently both inefficient and time‐consuming. Thus, to investigate low‐frequency events of interest, large sample sizes must be interrogated. We report a simple, versatile, and efficient micropatterned arraying system conducive to the culture and dynamic monitoring of stem cell proliferation. This platform enables: 1) parallel, automated, long‐term (∼days to weeks), live‐cell microscopy of single cells in culture; 2) tracking of individual cell fates over time (proliferation, apoptosis); and 3) correlation of differentiated progeny with founder clones. To achieve these goals, we used microfabrication techniques to create an array of ∼10,000 microwells on a glass coverslip. The dimensions of the wells are tunable, ranging from 20 to >500 μm in diameter and 10–500 μm in height. The microarray can be coated with adhesive proteins and is integrated into a culture chamber that permits rapid (∼min), addressable monitoring of each well using a standard programmable microscope stage. All cells share the same media (including paracrine survival signals), as opposed to cells in multiwell formats. The incorporation of a coverslip as a substrate also renders the platform compatible with conventional, high‐magnification light and fluorescent microscopy. We validated this approach by analyzing the proliferation dynamics of a heterogeneous adult rat neural stem cell population. Using this platform, one can further interrogate the response of distinct stem cell subpopulations to microenvironmental cues (mitogens, cell–cell interactions, and cell–extracellular matrix interactions) that govern their behavior. In the future, the platform may also be adapted for the study of other cell types by tailoring the surface coatings, microwell dimensions, and culture environment, thereby enabling parallel investigation of many distinct cellular responses. © 2004 Wiley Periodicals, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.20254</identifier><identifier>PMID: 15486946</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Arrays ; Biological and medical sciences ; BioMEMS ; Biotechnology ; Cell Count - instrumentation ; Cell Count - methods ; Cell Culture Techniques - instrumentation ; Cell Culture Techniques - methods ; Cell Separation - instrumentation ; Cell Separation - methods ; Cells, Cultured ; clonal assay ; Diverse techniques ; Equipment Design ; Equipment Failure Analysis ; Flow Cytometry - instrumentation ; Flow Cytometry - methods ; Fundamental and applied biological sciences. Psychology ; Health. Pharmaceutical industry ; high-throughput ; Hippocampus - cytology ; Hippocampus - physiology ; Humans ; Industrial applications and implications. Economical aspects ; microfabrication ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Microscopy ; Microscopy, Fluorescence - instrumentation ; Microscopy, Fluorescence - methods ; Miniaturization ; Miscellaneous ; Molecular and cellular biology ; Monitoring systems ; Neurons - cytology ; Neurons - physiology ; Stem cells ; Stem Cells - cytology ; Stem Cells - physiology</subject><ispartof>Biotechnology and bioengineering, 2004-11, Vol.88 (3), p.399-415</ispartof><rights>Copyright © 2004 Wiley Periodicals, Inc.</rights><rights>2005 INIST-CNRS</rights><rights>Copyright 2004 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Nov 5, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5134-8e0097f79f2a80fefb8e72fba0b8fcc49539cff9f16291f4d36ed085363eb43a3</citedby><cites>FETCH-LOGICAL-c5134-8e0097f79f2a80fefb8e72fba0b8fcc49539cff9f16291f4d36ed085363eb43a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.20254$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.20254$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16238297$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15486946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chin, Vicki I.</creatorcontrib><creatorcontrib>Taupin, Philippe</creatorcontrib><creatorcontrib>Sanga, Sandeep</creatorcontrib><creatorcontrib>Scheel, John</creatorcontrib><creatorcontrib>Gage, Fred H.</creatorcontrib><creatorcontrib>Bhatia, Sangeeta N.</creatorcontrib><title>Microfabricated platform for studying stem cell fates</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Platforms that allow parallel, quantitative analysis of single cells will be integral to realizing the potential of postgenomic biology. In stem cell biology, the study of clonal stem cells in multiwell formats is currently both inefficient and time‐consuming. Thus, to investigate low‐frequency events of interest, large sample sizes must be interrogated. We report a simple, versatile, and efficient micropatterned arraying system conducive to the culture and dynamic monitoring of stem cell proliferation. This platform enables: 1) parallel, automated, long‐term (∼days to weeks), live‐cell microscopy of single cells in culture; 2) tracking of individual cell fates over time (proliferation, apoptosis); and 3) correlation of differentiated progeny with founder clones. To achieve these goals, we used microfabrication techniques to create an array of ∼10,000 microwells on a glass coverslip. The dimensions of the wells are tunable, ranging from 20 to >500 μm in diameter and 10–500 μm in height. The microarray can be coated with adhesive proteins and is integrated into a culture chamber that permits rapid (∼min), addressable monitoring of each well using a standard programmable microscope stage. All cells share the same media (including paracrine survival signals), as opposed to cells in multiwell formats. The incorporation of a coverslip as a substrate also renders the platform compatible with conventional, high‐magnification light and fluorescent microscopy. We validated this approach by analyzing the proliferation dynamics of a heterogeneous adult rat neural stem cell population. Using this platform, one can further interrogate the response of distinct stem cell subpopulations to microenvironmental cues (mitogens, cell–cell interactions, and cell–extracellular matrix interactions) that govern their behavior. In the future, the platform may also be adapted for the study of other cell types by tailoring the surface coatings, microwell dimensions, and culture environment, thereby enabling parallel investigation of many distinct cellular responses. © 2004 Wiley Periodicals, Inc.</description><subject>Arrays</subject><subject>Biological and medical sciences</subject><subject>BioMEMS</subject><subject>Biotechnology</subject><subject>Cell Count - instrumentation</subject><subject>Cell Count - methods</subject><subject>Cell Culture Techniques - instrumentation</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Separation - instrumentation</subject><subject>Cell Separation - methods</subject><subject>Cells, Cultured</subject><subject>clonal assay</subject><subject>Diverse techniques</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Flow Cytometry - instrumentation</subject><subject>Flow Cytometry - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Health. Pharmaceutical industry</subject><subject>high-throughput</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Humans</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>microfabrication</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence - instrumentation</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Miniaturization</subject><subject>Miscellaneous</subject><subject>Molecular and cellular biology</subject><subject>Monitoring systems</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - physiology</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0VtLHDEUB_BQKrq1PvQLlKHQgg-jJ_fksZW6CtoLbCn0JWQyiURndrbJDHW_vdHdKgilL7nA75wk_yD0BsMRBiDHTRyPCBDOXqAZBi1rIBpeohkAiJpyTfbQq5yvy1YqIXbRHuZMCc3EDPHL6NIQbJOis6Nvq1VnxzCkvipDlcepXcflVVn4vnK-66pQVH6NdoLtsj_Yzvvox-nnxclZffF1fn7y8aJ2HFNWKw_lNkHqQKyC4EOjvCShsdCo4BzTnGoXgg5YEI0Da6nwLShOBfUNo5buow-bvqs0_J58Hk0f8_017NIPUzZCAmAB8F9IQElFCCvw3TN4PUxpWR5hCKZSCM5EQYcbVKLJOflgVin2Nq0NBnOfuCmJm4fEi327bTg1vW-f5DbiAt5vgc3OdiHZpYv5yQlCFdGyuOON-xM7v_73iebT-eLv0fWmIpbvuX2ssOmmBEMlNz-_zA35ji9PF7_m5hu9A59VpPk</recordid><startdate>20041105</startdate><enddate>20041105</enddate><creator>Chin, Vicki I.</creator><creator>Taupin, Philippe</creator><creator>Sanga, Sandeep</creator><creator>Scheel, John</creator><creator>Gage, Fred H.</creator><creator>Bhatia, Sangeeta N.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20041105</creationdate><title>Microfabricated platform for studying stem cell fates</title><author>Chin, Vicki I. ; Taupin, Philippe ; Sanga, Sandeep ; Scheel, John ; Gage, Fred H. ; Bhatia, Sangeeta N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5134-8e0097f79f2a80fefb8e72fba0b8fcc49539cff9f16291f4d36ed085363eb43a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Arrays</topic><topic>Biological and medical sciences</topic><topic>BioMEMS</topic><topic>Biotechnology</topic><topic>Cell Count - instrumentation</topic><topic>Cell Count - methods</topic><topic>Cell Culture Techniques - instrumentation</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Separation - instrumentation</topic><topic>Cell Separation - methods</topic><topic>Cells, Cultured</topic><topic>clonal assay</topic><topic>Diverse techniques</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Flow Cytometry - instrumentation</topic><topic>Flow Cytometry - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Health. Pharmaceutical industry</topic><topic>high-throughput</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Humans</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>microfabrication</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence - instrumentation</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Miniaturization</topic><topic>Miscellaneous</topic><topic>Molecular and cellular biology</topic><topic>Monitoring systems</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chin, Vicki I.</creatorcontrib><creatorcontrib>Taupin, Philippe</creatorcontrib><creatorcontrib>Sanga, Sandeep</creatorcontrib><creatorcontrib>Scheel, John</creatorcontrib><creatorcontrib>Gage, Fred H.</creatorcontrib><creatorcontrib>Bhatia, Sangeeta N.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chin, Vicki I.</au><au>Taupin, Philippe</au><au>Sanga, Sandeep</au><au>Scheel, John</au><au>Gage, Fred H.</au><au>Bhatia, Sangeeta N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfabricated platform for studying stem cell fates</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2004-11-05</date><risdate>2004</risdate><volume>88</volume><issue>3</issue><spage>399</spage><epage>415</epage><pages>399-415</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Platforms that allow parallel, quantitative analysis of single cells will be integral to realizing the potential of postgenomic biology. In stem cell biology, the study of clonal stem cells in multiwell formats is currently both inefficient and time‐consuming. Thus, to investigate low‐frequency events of interest, large sample sizes must be interrogated. We report a simple, versatile, and efficient micropatterned arraying system conducive to the culture and dynamic monitoring of stem cell proliferation. This platform enables: 1) parallel, automated, long‐term (∼days to weeks), live‐cell microscopy of single cells in culture; 2) tracking of individual cell fates over time (proliferation, apoptosis); and 3) correlation of differentiated progeny with founder clones. To achieve these goals, we used microfabrication techniques to create an array of ∼10,000 microwells on a glass coverslip. The dimensions of the wells are tunable, ranging from 20 to >500 μm in diameter and 10–500 μm in height. The microarray can be coated with adhesive proteins and is integrated into a culture chamber that permits rapid (∼min), addressable monitoring of each well using a standard programmable microscope stage. All cells share the same media (including paracrine survival signals), as opposed to cells in multiwell formats. The incorporation of a coverslip as a substrate also renders the platform compatible with conventional, high‐magnification light and fluorescent microscopy. We validated this approach by analyzing the proliferation dynamics of a heterogeneous adult rat neural stem cell population. Using this platform, one can further interrogate the response of distinct stem cell subpopulations to microenvironmental cues (mitogens, cell–cell interactions, and cell–extracellular matrix interactions) that govern their behavior. In the future, the platform may also be adapted for the study of other cell types by tailoring the surface coatings, microwell dimensions, and culture environment, thereby enabling parallel investigation of many distinct cellular responses. © 2004 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15486946</pmid><doi>10.1002/bit.20254</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2004-11, Vol.88 (3), p.399-415 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_67001600 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Arrays Biological and medical sciences BioMEMS Biotechnology Cell Count - instrumentation Cell Count - methods Cell Culture Techniques - instrumentation Cell Culture Techniques - methods Cell Separation - instrumentation Cell Separation - methods Cells, Cultured clonal assay Diverse techniques Equipment Design Equipment Failure Analysis Flow Cytometry - instrumentation Flow Cytometry - methods Fundamental and applied biological sciences. Psychology Health. Pharmaceutical industry high-throughput Hippocampus - cytology Hippocampus - physiology Humans Industrial applications and implications. Economical aspects microfabrication Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Microscopy Microscopy, Fluorescence - instrumentation Microscopy, Fluorescence - methods Miniaturization Miscellaneous Molecular and cellular biology Monitoring systems Neurons - cytology Neurons - physiology Stem cells Stem Cells - cytology Stem Cells - physiology |
title | Microfabricated platform for studying stem cell fates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T08%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfabricated%20platform%20for%20studying%20stem%20cell%20fates&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Chin,%20Vicki%20I.&rft.date=2004-11-05&rft.volume=88&rft.issue=3&rft.spage=399&rft.epage=415&rft.pages=399-415&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.20254&rft_dat=%3Cproquest_cross%3E67001600%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213766546&rft_id=info:pmid/15486946&rfr_iscdi=true |