Microfabricated platform for studying stem cell fates

Platforms that allow parallel, quantitative analysis of single cells will be integral to realizing the potential of postgenomic biology. In stem cell biology, the study of clonal stem cells in multiwell formats is currently both inefficient and time‐consuming. Thus, to investigate low‐frequency even...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2004-11, Vol.88 (3), p.399-415
Hauptverfasser: Chin, Vicki I., Taupin, Philippe, Sanga, Sandeep, Scheel, John, Gage, Fred H., Bhatia, Sangeeta N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 415
container_issue 3
container_start_page 399
container_title Biotechnology and bioengineering
container_volume 88
creator Chin, Vicki I.
Taupin, Philippe
Sanga, Sandeep
Scheel, John
Gage, Fred H.
Bhatia, Sangeeta N.
description Platforms that allow parallel, quantitative analysis of single cells will be integral to realizing the potential of postgenomic biology. In stem cell biology, the study of clonal stem cells in multiwell formats is currently both inefficient and time‐consuming. Thus, to investigate low‐frequency events of interest, large sample sizes must be interrogated. We report a simple, versatile, and efficient micropatterned arraying system conducive to the culture and dynamic monitoring of stem cell proliferation. This platform enables: 1) parallel, automated, long‐term (∼days to weeks), live‐cell microscopy of single cells in culture; 2) tracking of individual cell fates over time (proliferation, apoptosis); and 3) correlation of differentiated progeny with founder clones. To achieve these goals, we used microfabrication techniques to create an array of ∼10,000 microwells on a glass coverslip. The dimensions of the wells are tunable, ranging from 20 to >500 μm in diameter and 10–500 μm in height. The microarray can be coated with adhesive proteins and is integrated into a culture chamber that permits rapid (∼min), addressable monitoring of each well using a standard programmable microscope stage. All cells share the same media (including paracrine survival signals), as opposed to cells in multiwell formats. The incorporation of a coverslip as a substrate also renders the platform compatible with conventional, high‐magnification light and fluorescent microscopy. We validated this approach by analyzing the proliferation dynamics of a heterogeneous adult rat neural stem cell population. Using this platform, one can further interrogate the response of distinct stem cell subpopulations to microenvironmental cues (mitogens, cell–cell interactions, and cell–extracellular matrix interactions) that govern their behavior. In the future, the platform may also be adapted for the study of other cell types by tailoring the surface coatings, microwell dimensions, and culture environment, thereby enabling parallel investigation of many distinct cellular responses. © 2004 Wiley Periodicals, Inc.
doi_str_mv 10.1002/bit.20254
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67001600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67001600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5134-8e0097f79f2a80fefb8e72fba0b8fcc49539cff9f16291f4d36ed085363eb43a3</originalsourceid><addsrcrecordid>eNqF0VtLHDEUB_BQKrq1PvQLlKHQgg-jJ_fksZW6CtoLbCn0JWQyiURndrbJDHW_vdHdKgilL7nA75wk_yD0BsMRBiDHTRyPCBDOXqAZBi1rIBpeohkAiJpyTfbQq5yvy1YqIXbRHuZMCc3EDPHL6NIQbJOis6Nvq1VnxzCkvipDlcepXcflVVn4vnK-66pQVH6NdoLtsj_Yzvvox-nnxclZffF1fn7y8aJ2HFNWKw_lNkHqQKyC4EOjvCShsdCo4BzTnGoXgg5YEI0Da6nwLShOBfUNo5buow-bvqs0_J58Hk0f8_017NIPUzZCAmAB8F9IQElFCCvw3TN4PUxpWR5hCKZSCM5EQYcbVKLJOflgVin2Nq0NBnOfuCmJm4fEi327bTg1vW-f5DbiAt5vgc3OdiHZpYv5yQlCFdGyuOON-xM7v_73iebT-eLv0fWmIpbvuX2ssOmmBEMlNz-_zA35ji9PF7_m5hu9A59VpPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213766546</pqid></control><display><type>article</type><title>Microfabricated platform for studying stem cell fates</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Chin, Vicki I. ; Taupin, Philippe ; Sanga, Sandeep ; Scheel, John ; Gage, Fred H. ; Bhatia, Sangeeta N.</creator><creatorcontrib>Chin, Vicki I. ; Taupin, Philippe ; Sanga, Sandeep ; Scheel, John ; Gage, Fred H. ; Bhatia, Sangeeta N.</creatorcontrib><description>Platforms that allow parallel, quantitative analysis of single cells will be integral to realizing the potential of postgenomic biology. In stem cell biology, the study of clonal stem cells in multiwell formats is currently both inefficient and time‐consuming. Thus, to investigate low‐frequency events of interest, large sample sizes must be interrogated. We report a simple, versatile, and efficient micropatterned arraying system conducive to the culture and dynamic monitoring of stem cell proliferation. This platform enables: 1) parallel, automated, long‐term (∼days to weeks), live‐cell microscopy of single cells in culture; 2) tracking of individual cell fates over time (proliferation, apoptosis); and 3) correlation of differentiated progeny with founder clones. To achieve these goals, we used microfabrication techniques to create an array of ∼10,000 microwells on a glass coverslip. The dimensions of the wells are tunable, ranging from 20 to &gt;500 μm in diameter and 10–500 μm in height. The microarray can be coated with adhesive proteins and is integrated into a culture chamber that permits rapid (∼min), addressable monitoring of each well using a standard programmable microscope stage. All cells share the same media (including paracrine survival signals), as opposed to cells in multiwell formats. The incorporation of a coverslip as a substrate also renders the platform compatible with conventional, high‐magnification light and fluorescent microscopy. We validated this approach by analyzing the proliferation dynamics of a heterogeneous adult rat neural stem cell population. Using this platform, one can further interrogate the response of distinct stem cell subpopulations to microenvironmental cues (mitogens, cell–cell interactions, and cell–extracellular matrix interactions) that govern their behavior. In the future, the platform may also be adapted for the study of other cell types by tailoring the surface coatings, microwell dimensions, and culture environment, thereby enabling parallel investigation of many distinct cellular responses. © 2004 Wiley Periodicals, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.20254</identifier><identifier>PMID: 15486946</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Arrays ; Biological and medical sciences ; BioMEMS ; Biotechnology ; Cell Count - instrumentation ; Cell Count - methods ; Cell Culture Techniques - instrumentation ; Cell Culture Techniques - methods ; Cell Separation - instrumentation ; Cell Separation - methods ; Cells, Cultured ; clonal assay ; Diverse techniques ; Equipment Design ; Equipment Failure Analysis ; Flow Cytometry - instrumentation ; Flow Cytometry - methods ; Fundamental and applied biological sciences. Psychology ; Health. Pharmaceutical industry ; high-throughput ; Hippocampus - cytology ; Hippocampus - physiology ; Humans ; Industrial applications and implications. Economical aspects ; microfabrication ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Microscopy ; Microscopy, Fluorescence - instrumentation ; Microscopy, Fluorescence - methods ; Miniaturization ; Miscellaneous ; Molecular and cellular biology ; Monitoring systems ; Neurons - cytology ; Neurons - physiology ; Stem cells ; Stem Cells - cytology ; Stem Cells - physiology</subject><ispartof>Biotechnology and bioengineering, 2004-11, Vol.88 (3), p.399-415</ispartof><rights>Copyright © 2004 Wiley Periodicals, Inc.</rights><rights>2005 INIST-CNRS</rights><rights>Copyright 2004 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Nov 5, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5134-8e0097f79f2a80fefb8e72fba0b8fcc49539cff9f16291f4d36ed085363eb43a3</citedby><cites>FETCH-LOGICAL-c5134-8e0097f79f2a80fefb8e72fba0b8fcc49539cff9f16291f4d36ed085363eb43a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.20254$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.20254$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16238297$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15486946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chin, Vicki I.</creatorcontrib><creatorcontrib>Taupin, Philippe</creatorcontrib><creatorcontrib>Sanga, Sandeep</creatorcontrib><creatorcontrib>Scheel, John</creatorcontrib><creatorcontrib>Gage, Fred H.</creatorcontrib><creatorcontrib>Bhatia, Sangeeta N.</creatorcontrib><title>Microfabricated platform for studying stem cell fates</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Platforms that allow parallel, quantitative analysis of single cells will be integral to realizing the potential of postgenomic biology. In stem cell biology, the study of clonal stem cells in multiwell formats is currently both inefficient and time‐consuming. Thus, to investigate low‐frequency events of interest, large sample sizes must be interrogated. We report a simple, versatile, and efficient micropatterned arraying system conducive to the culture and dynamic monitoring of stem cell proliferation. This platform enables: 1) parallel, automated, long‐term (∼days to weeks), live‐cell microscopy of single cells in culture; 2) tracking of individual cell fates over time (proliferation, apoptosis); and 3) correlation of differentiated progeny with founder clones. To achieve these goals, we used microfabrication techniques to create an array of ∼10,000 microwells on a glass coverslip. The dimensions of the wells are tunable, ranging from 20 to &gt;500 μm in diameter and 10–500 μm in height. The microarray can be coated with adhesive proteins and is integrated into a culture chamber that permits rapid (∼min), addressable monitoring of each well using a standard programmable microscope stage. All cells share the same media (including paracrine survival signals), as opposed to cells in multiwell formats. The incorporation of a coverslip as a substrate also renders the platform compatible with conventional, high‐magnification light and fluorescent microscopy. We validated this approach by analyzing the proliferation dynamics of a heterogeneous adult rat neural stem cell population. Using this platform, one can further interrogate the response of distinct stem cell subpopulations to microenvironmental cues (mitogens, cell–cell interactions, and cell–extracellular matrix interactions) that govern their behavior. In the future, the platform may also be adapted for the study of other cell types by tailoring the surface coatings, microwell dimensions, and culture environment, thereby enabling parallel investigation of many distinct cellular responses. © 2004 Wiley Periodicals, Inc.</description><subject>Arrays</subject><subject>Biological and medical sciences</subject><subject>BioMEMS</subject><subject>Biotechnology</subject><subject>Cell Count - instrumentation</subject><subject>Cell Count - methods</subject><subject>Cell Culture Techniques - instrumentation</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Separation - instrumentation</subject><subject>Cell Separation - methods</subject><subject>Cells, Cultured</subject><subject>clonal assay</subject><subject>Diverse techniques</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Flow Cytometry - instrumentation</subject><subject>Flow Cytometry - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Health. Pharmaceutical industry</subject><subject>high-throughput</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Humans</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>microfabrication</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence - instrumentation</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Miniaturization</subject><subject>Miscellaneous</subject><subject>Molecular and cellular biology</subject><subject>Monitoring systems</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - physiology</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0VtLHDEUB_BQKrq1PvQLlKHQgg-jJ_fksZW6CtoLbCn0JWQyiURndrbJDHW_vdHdKgilL7nA75wk_yD0BsMRBiDHTRyPCBDOXqAZBi1rIBpeohkAiJpyTfbQq5yvy1YqIXbRHuZMCc3EDPHL6NIQbJOis6Nvq1VnxzCkvipDlcepXcflVVn4vnK-66pQVH6NdoLtsj_Yzvvox-nnxclZffF1fn7y8aJ2HFNWKw_lNkHqQKyC4EOjvCShsdCo4BzTnGoXgg5YEI0Da6nwLShOBfUNo5buow-bvqs0_J58Hk0f8_017NIPUzZCAmAB8F9IQElFCCvw3TN4PUxpWR5hCKZSCM5EQYcbVKLJOflgVin2Nq0NBnOfuCmJm4fEi327bTg1vW-f5DbiAt5vgc3OdiHZpYv5yQlCFdGyuOON-xM7v_73iebT-eLv0fWmIpbvuX2ssOmmBEMlNz-_zA35ji9PF7_m5hu9A59VpPk</recordid><startdate>20041105</startdate><enddate>20041105</enddate><creator>Chin, Vicki I.</creator><creator>Taupin, Philippe</creator><creator>Sanga, Sandeep</creator><creator>Scheel, John</creator><creator>Gage, Fred H.</creator><creator>Bhatia, Sangeeta N.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20041105</creationdate><title>Microfabricated platform for studying stem cell fates</title><author>Chin, Vicki I. ; Taupin, Philippe ; Sanga, Sandeep ; Scheel, John ; Gage, Fred H. ; Bhatia, Sangeeta N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5134-8e0097f79f2a80fefb8e72fba0b8fcc49539cff9f16291f4d36ed085363eb43a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Arrays</topic><topic>Biological and medical sciences</topic><topic>BioMEMS</topic><topic>Biotechnology</topic><topic>Cell Count - instrumentation</topic><topic>Cell Count - methods</topic><topic>Cell Culture Techniques - instrumentation</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Separation - instrumentation</topic><topic>Cell Separation - methods</topic><topic>Cells, Cultured</topic><topic>clonal assay</topic><topic>Diverse techniques</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Flow Cytometry - instrumentation</topic><topic>Flow Cytometry - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Health. Pharmaceutical industry</topic><topic>high-throughput</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Humans</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>microfabrication</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence - instrumentation</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Miniaturization</topic><topic>Miscellaneous</topic><topic>Molecular and cellular biology</topic><topic>Monitoring systems</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chin, Vicki I.</creatorcontrib><creatorcontrib>Taupin, Philippe</creatorcontrib><creatorcontrib>Sanga, Sandeep</creatorcontrib><creatorcontrib>Scheel, John</creatorcontrib><creatorcontrib>Gage, Fred H.</creatorcontrib><creatorcontrib>Bhatia, Sangeeta N.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chin, Vicki I.</au><au>Taupin, Philippe</au><au>Sanga, Sandeep</au><au>Scheel, John</au><au>Gage, Fred H.</au><au>Bhatia, Sangeeta N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfabricated platform for studying stem cell fates</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2004-11-05</date><risdate>2004</risdate><volume>88</volume><issue>3</issue><spage>399</spage><epage>415</epage><pages>399-415</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Platforms that allow parallel, quantitative analysis of single cells will be integral to realizing the potential of postgenomic biology. In stem cell biology, the study of clonal stem cells in multiwell formats is currently both inefficient and time‐consuming. Thus, to investigate low‐frequency events of interest, large sample sizes must be interrogated. We report a simple, versatile, and efficient micropatterned arraying system conducive to the culture and dynamic monitoring of stem cell proliferation. This platform enables: 1) parallel, automated, long‐term (∼days to weeks), live‐cell microscopy of single cells in culture; 2) tracking of individual cell fates over time (proliferation, apoptosis); and 3) correlation of differentiated progeny with founder clones. To achieve these goals, we used microfabrication techniques to create an array of ∼10,000 microwells on a glass coverslip. The dimensions of the wells are tunable, ranging from 20 to &gt;500 μm in diameter and 10–500 μm in height. The microarray can be coated with adhesive proteins and is integrated into a culture chamber that permits rapid (∼min), addressable monitoring of each well using a standard programmable microscope stage. All cells share the same media (including paracrine survival signals), as opposed to cells in multiwell formats. The incorporation of a coverslip as a substrate also renders the platform compatible with conventional, high‐magnification light and fluorescent microscopy. We validated this approach by analyzing the proliferation dynamics of a heterogeneous adult rat neural stem cell population. Using this platform, one can further interrogate the response of distinct stem cell subpopulations to microenvironmental cues (mitogens, cell–cell interactions, and cell–extracellular matrix interactions) that govern their behavior. In the future, the platform may also be adapted for the study of other cell types by tailoring the surface coatings, microwell dimensions, and culture environment, thereby enabling parallel investigation of many distinct cellular responses. © 2004 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15486946</pmid><doi>10.1002/bit.20254</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2004-11, Vol.88 (3), p.399-415
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_67001600
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Arrays
Biological and medical sciences
BioMEMS
Biotechnology
Cell Count - instrumentation
Cell Count - methods
Cell Culture Techniques - instrumentation
Cell Culture Techniques - methods
Cell Separation - instrumentation
Cell Separation - methods
Cells, Cultured
clonal assay
Diverse techniques
Equipment Design
Equipment Failure Analysis
Flow Cytometry - instrumentation
Flow Cytometry - methods
Fundamental and applied biological sciences. Psychology
Health. Pharmaceutical industry
high-throughput
Hippocampus - cytology
Hippocampus - physiology
Humans
Industrial applications and implications. Economical aspects
microfabrication
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Microscopy
Microscopy, Fluorescence - instrumentation
Microscopy, Fluorescence - methods
Miniaturization
Miscellaneous
Molecular and cellular biology
Monitoring systems
Neurons - cytology
Neurons - physiology
Stem cells
Stem Cells - cytology
Stem Cells - physiology
title Microfabricated platform for studying stem cell fates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T08%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfabricated%20platform%20for%20studying%20stem%20cell%20fates&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Chin,%20Vicki%20I.&rft.date=2004-11-05&rft.volume=88&rft.issue=3&rft.spage=399&rft.epage=415&rft.pages=399-415&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.20254&rft_dat=%3Cproquest_cross%3E67001600%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213766546&rft_id=info:pmid/15486946&rfr_iscdi=true