Quantitative analysis of virus and plasmid trafficking in cells
Intracellular transport of DNA carriers is a fundamental step of gene delivery. By combining both theoretical and numerical approaches we study here single and several viruses and DNA particles trafficking in the cell cytoplasm to a small nuclear pore. We present a physical model to account for cert...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2009-01, Vol.79 (1 Pt 1), p.011921-011921, Article 011921 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 011921 |
---|---|
container_issue | 1 Pt 1 |
container_start_page | 011921 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 79 |
creator | Lagache, Thibault Dauty, Emmanuel Holcman, David |
description | Intracellular transport of DNA carriers is a fundamental step of gene delivery. By combining both theoretical and numerical approaches we study here single and several viruses and DNA particles trafficking in the cell cytoplasm to a small nuclear pore. We present a physical model to account for certain aspects of cellular organization, starting with the observation that a viral trajectory consists of epochs of pure diffusion and epochs of active transport along microtubules. We define a general degradation rate to describe the limitations of the delivery of plasmid or viral particles to a nuclear pore imposed by various types of direct and indirect hydrolysis activity inside the cytoplasm. By replacing the switching dynamics by a single steady state stochastic description, we obtain estimates for the probability and the mean time for the first one of many particles to go from the cell membrane to a small nuclear pore. Computational simulations confirm that our model can be used to analyze and interpret viral trajectories and estimate quantitatively the success of nuclear delivery. |
doi_str_mv | 10.1103/PhysRevE.79.011921 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66989148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66989148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-cee0776d6de864481b81f2ef44b3f9e7209f8483a78f217c438a0203d845bca33</originalsourceid><addsrcrecordid>eNpFkMtKAzEUhoMotlZfwIXMyt3UJCeZJCuRUi8geEHXIZNJNDqXmswU-vZOacXVORz-_-PwIXRO8JwQDFfPn5v06tbLuVBzTIii5ABNCec4pyCKw-0OKgfB-QSdpPSFMVCQ7BhNxiwXWMIUXb8Mpu1Db_qwdplpTb1JIWWdz9YhDmm8VNmqNqkJVdZH432w36H9yEKbWVfX6RQdeVMnd7afM_R-u3xb3OePT3cPi5vH3ALHfW6dw0IUVVE5WTAmSSmJp84zVoJXTlCsvGQSjJCeEmEZSIMphkoyXloDMEOXO-4qdj-DS71uQtp-YFrXDUkXhZKKjIQZorugjV1K0Xm9iqExcaMJ1ltt-k-bFkrvtI2liz19KBtX_Vf2nuAX5PRqPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66989148</pqid></control><display><type>article</type><title>Quantitative analysis of virus and plasmid trafficking in cells</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Lagache, Thibault ; Dauty, Emmanuel ; Holcman, David</creator><creatorcontrib>Lagache, Thibault ; Dauty, Emmanuel ; Holcman, David</creatorcontrib><description>Intracellular transport of DNA carriers is a fundamental step of gene delivery. By combining both theoretical and numerical approaches we study here single and several viruses and DNA particles trafficking in the cell cytoplasm to a small nuclear pore. We present a physical model to account for certain aspects of cellular organization, starting with the observation that a viral trajectory consists of epochs of pure diffusion and epochs of active transport along microtubules. We define a general degradation rate to describe the limitations of the delivery of plasmid or viral particles to a nuclear pore imposed by various types of direct and indirect hydrolysis activity inside the cytoplasm. By replacing the switching dynamics by a single steady state stochastic description, we obtain estimates for the probability and the mean time for the first one of many particles to go from the cell membrane to a small nuclear pore. Computational simulations confirm that our model can be used to analyze and interpret viral trajectories and estimate quantitatively the success of nuclear delivery.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.79.011921</identifier><identifier>PMID: 19257083</identifier><language>eng</language><publisher>United States</publisher><subject>Biological Transport ; Cell Nucleus - metabolism ; Cells - cytology ; Cells - metabolism ; Diffusion ; DNA - metabolism ; Gene Transfer Techniques ; Genetic Vectors - metabolism ; Hydrolysis ; Microtubules - metabolism ; Models, Biological ; Movement ; Plasmids - metabolism ; Porosity ; Probability ; Proteasome Endopeptidase Complex - metabolism ; Time Factors ; Viruses - metabolism</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2009-01, Vol.79 (1 Pt 1), p.011921-011921, Article 011921</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-cee0776d6de864481b81f2ef44b3f9e7209f8483a78f217c438a0203d845bca33</citedby><cites>FETCH-LOGICAL-c350t-cee0776d6de864481b81f2ef44b3f9e7209f8483a78f217c438a0203d845bca33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2874,2875,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19257083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lagache, Thibault</creatorcontrib><creatorcontrib>Dauty, Emmanuel</creatorcontrib><creatorcontrib>Holcman, David</creatorcontrib><title>Quantitative analysis of virus and plasmid trafficking in cells</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Intracellular transport of DNA carriers is a fundamental step of gene delivery. By combining both theoretical and numerical approaches we study here single and several viruses and DNA particles trafficking in the cell cytoplasm to a small nuclear pore. We present a physical model to account for certain aspects of cellular organization, starting with the observation that a viral trajectory consists of epochs of pure diffusion and epochs of active transport along microtubules. We define a general degradation rate to describe the limitations of the delivery of plasmid or viral particles to a nuclear pore imposed by various types of direct and indirect hydrolysis activity inside the cytoplasm. By replacing the switching dynamics by a single steady state stochastic description, we obtain estimates for the probability and the mean time for the first one of many particles to go from the cell membrane to a small nuclear pore. Computational simulations confirm that our model can be used to analyze and interpret viral trajectories and estimate quantitatively the success of nuclear delivery.</description><subject>Biological Transport</subject><subject>Cell Nucleus - metabolism</subject><subject>Cells - cytology</subject><subject>Cells - metabolism</subject><subject>Diffusion</subject><subject>DNA - metabolism</subject><subject>Gene Transfer Techniques</subject><subject>Genetic Vectors - metabolism</subject><subject>Hydrolysis</subject><subject>Microtubules - metabolism</subject><subject>Models, Biological</subject><subject>Movement</subject><subject>Plasmids - metabolism</subject><subject>Porosity</subject><subject>Probability</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Time Factors</subject><subject>Viruses - metabolism</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkMtKAzEUhoMotlZfwIXMyt3UJCeZJCuRUi8geEHXIZNJNDqXmswU-vZOacXVORz-_-PwIXRO8JwQDFfPn5v06tbLuVBzTIii5ABNCec4pyCKw-0OKgfB-QSdpPSFMVCQ7BhNxiwXWMIUXb8Mpu1Db_qwdplpTb1JIWWdz9YhDmm8VNmqNqkJVdZH432w36H9yEKbWVfX6RQdeVMnd7afM_R-u3xb3OePT3cPi5vH3ALHfW6dw0IUVVE5WTAmSSmJp84zVoJXTlCsvGQSjJCeEmEZSIMphkoyXloDMEOXO-4qdj-DS71uQtp-YFrXDUkXhZKKjIQZorugjV1K0Xm9iqExcaMJ1ltt-k-bFkrvtI2liz19KBtX_Vf2nuAX5PRqPw</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Lagache, Thibault</creator><creator>Dauty, Emmanuel</creator><creator>Holcman, David</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090101</creationdate><title>Quantitative analysis of virus and plasmid trafficking in cells</title><author>Lagache, Thibault ; Dauty, Emmanuel ; Holcman, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-cee0776d6de864481b81f2ef44b3f9e7209f8483a78f217c438a0203d845bca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological Transport</topic><topic>Cell Nucleus - metabolism</topic><topic>Cells - cytology</topic><topic>Cells - metabolism</topic><topic>Diffusion</topic><topic>DNA - metabolism</topic><topic>Gene Transfer Techniques</topic><topic>Genetic Vectors - metabolism</topic><topic>Hydrolysis</topic><topic>Microtubules - metabolism</topic><topic>Models, Biological</topic><topic>Movement</topic><topic>Plasmids - metabolism</topic><topic>Porosity</topic><topic>Probability</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Time Factors</topic><topic>Viruses - metabolism</topic><toplevel>online_resources</toplevel><creatorcontrib>Lagache, Thibault</creatorcontrib><creatorcontrib>Dauty, Emmanuel</creatorcontrib><creatorcontrib>Holcman, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lagache, Thibault</au><au>Dauty, Emmanuel</au><au>Holcman, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative analysis of virus and plasmid trafficking in cells</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>79</volume><issue>1 Pt 1</issue><spage>011921</spage><epage>011921</epage><pages>011921-011921</pages><artnum>011921</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>Intracellular transport of DNA carriers is a fundamental step of gene delivery. By combining both theoretical and numerical approaches we study here single and several viruses and DNA particles trafficking in the cell cytoplasm to a small nuclear pore. We present a physical model to account for certain aspects of cellular organization, starting with the observation that a viral trajectory consists of epochs of pure diffusion and epochs of active transport along microtubules. We define a general degradation rate to describe the limitations of the delivery of plasmid or viral particles to a nuclear pore imposed by various types of direct and indirect hydrolysis activity inside the cytoplasm. By replacing the switching dynamics by a single steady state stochastic description, we obtain estimates for the probability and the mean time for the first one of many particles to go from the cell membrane to a small nuclear pore. Computational simulations confirm that our model can be used to analyze and interpret viral trajectories and estimate quantitatively the success of nuclear delivery.</abstract><cop>United States</cop><pmid>19257083</pmid><doi>10.1103/PhysRevE.79.011921</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2009-01, Vol.79 (1 Pt 1), p.011921-011921, Article 011921 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_66989148 |
source | MEDLINE; American Physical Society Journals |
subjects | Biological Transport Cell Nucleus - metabolism Cells - cytology Cells - metabolism Diffusion DNA - metabolism Gene Transfer Techniques Genetic Vectors - metabolism Hydrolysis Microtubules - metabolism Models, Biological Movement Plasmids - metabolism Porosity Probability Proteasome Endopeptidase Complex - metabolism Time Factors Viruses - metabolism |
title | Quantitative analysis of virus and plasmid trafficking in cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20analysis%20of%20virus%20and%20plasmid%20trafficking%20in%20cells&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Lagache,%20Thibault&rft.date=2009-01-01&rft.volume=79&rft.issue=1%20Pt%201&rft.spage=011921&rft.epage=011921&rft.pages=011921-011921&rft.artnum=011921&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.79.011921&rft_dat=%3Cproquest_cross%3E66989148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66989148&rft_id=info:pmid/19257083&rfr_iscdi=true |