Structure of Bovine Rhodopsin in a Trigonal Crystal Form

We have determined the structure of bovine rhodopsin at 2.65 Å resolution using untwinned native crystals in the space group P3 1, by molecular replacement from the 2.8 Å model (1F88) solved in space group P4 1. The new structure reveals mechanistically important details unresolved previously, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2004-11, Vol.343 (5), p.1409-1438
Hauptverfasser: Li, Jade, Edwards, Patricia C., Burghammer, Manfred, Villa, Claudio, Schertler, Gebhard F.X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1438
container_issue 5
container_start_page 1409
container_title Journal of molecular biology
container_volume 343
creator Li, Jade
Edwards, Patricia C.
Burghammer, Manfred
Villa, Claudio
Schertler, Gebhard F.X.
description We have determined the structure of bovine rhodopsin at 2.65 Å resolution using untwinned native crystals in the space group P3 1, by molecular replacement from the 2.8 Å model (1F88) solved in space group P4 1. The new structure reveals mechanistically important details unresolved previously, which are considered in the membrane context by docking the structure into a cryo-electron microscopy map of 2D crystals. Kinks in the transmembrane helices facilitate inter-helical polar interactions. Ordered water molecules extend the hydrogen bonding networks, linking Trp265 in the retinal binding pocket to the NPxxY motif near the cytoplasmic boundary, and the Glu113 counterion for the protonated Schiff base to the extracellular surface. Glu113 forms a complex with a water molecule hydrogen bonded between its main chain and side-chain oxygen atoms. This can be expected to stabilise the salt-bridge with the protonated Schiff base linking the 11- cis-retinal to Lys296. The cytoplasmic ends of helices H5 and H6 have been extended by one turn. The G-protein interaction sites mapped to the cytoplasmic ends of H5 and H6 and a spiral extension of H5 are elevated above the bilayer. There is a surface cavity next to the conserved Glu134-Arg135 ion pair. The cytoplasmic loops have the highest temperature factors in the structure, indicative of their flexibility when not interacting with G protein or regulatory proteins. An ordered detergent molecule is seen wrapped around the kink in H6, stabilising the structure around the potential hinge in H6. These findings provide further explanation for the stability of the dark state structure. They support a mechanism for the activation, initiated by photo-isomerisation of the chromophore to its all- trans form, that involves pivoting movements of kinked helices, which, while maintaining hydrophobic contacts in the membrane interior, can be coupled to amplified translation of the helix ends near the membrane surfaces.
doi_str_mv 10.1016/j.jmb.2004.08.090
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66988583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283604010903</els_id><sourcerecordid>66988583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-8692895da241b02ade6875a59a70938ccd0e7f80f6d7f3a47ef8e6cbece912443</originalsourceid><addsrcrecordid>eNqFkEFr3DAQhUVpSLZpfkAuxafc7IxkWR7RU7p028BCoE3PQiuPGy1rayPZC_n3UdiF3lIYeJfvPYaPsWsOFQeubrfVdthUAkBWgBVo-MAWHFCXqGr8yBYAQpQCa3XBPqW0BYCmlnjOLngjNVeCLxj-nuLspjlSEfriWzj4kYpfT6EL--THIp8tHqP_G0a7K5bxJU05VyEOn9lZb3eJrk55yf6svj8uf5brhx_3y7t16aRUU_5EC9RNZ4XkGxC2I4VtYxttW9A1OtcBtT1Cr7q2r61sqUdSbkOONBdS1pfs5ri7j-F5pjSZwSdHu50dKczJKKURG6z_C_K2BgSpMsiPoIshpUi92Uc_2PhiOJg3r2Zrslfz5tUAmuw1d76cxufNQN2_xklkBr4eAcouDp6iSc7T6KjzkdxkuuDfmX8FcF2HPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17308046</pqid></control><display><type>article</type><title>Structure of Bovine Rhodopsin in a Trigonal Crystal Form</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Li, Jade ; Edwards, Patricia C. ; Burghammer, Manfred ; Villa, Claudio ; Schertler, Gebhard F.X.</creator><creatorcontrib>Li, Jade ; Edwards, Patricia C. ; Burghammer, Manfred ; Villa, Claudio ; Schertler, Gebhard F.X.</creatorcontrib><description>We have determined the structure of bovine rhodopsin at 2.65 Å resolution using untwinned native crystals in the space group P3 1, by molecular replacement from the 2.8 Å model (1F88) solved in space group P4 1. The new structure reveals mechanistically important details unresolved previously, which are considered in the membrane context by docking the structure into a cryo-electron microscopy map of 2D crystals. Kinks in the transmembrane helices facilitate inter-helical polar interactions. Ordered water molecules extend the hydrogen bonding networks, linking Trp265 in the retinal binding pocket to the NPxxY motif near the cytoplasmic boundary, and the Glu113 counterion for the protonated Schiff base to the extracellular surface. Glu113 forms a complex with a water molecule hydrogen bonded between its main chain and side-chain oxygen atoms. This can be expected to stabilise the salt-bridge with the protonated Schiff base linking the 11- cis-retinal to Lys296. The cytoplasmic ends of helices H5 and H6 have been extended by one turn. The G-protein interaction sites mapped to the cytoplasmic ends of H5 and H6 and a spiral extension of H5 are elevated above the bilayer. There is a surface cavity next to the conserved Glu134-Arg135 ion pair. The cytoplasmic loops have the highest temperature factors in the structure, indicative of their flexibility when not interacting with G protein or regulatory proteins. An ordered detergent molecule is seen wrapped around the kink in H6, stabilising the structure around the potential hinge in H6. These findings provide further explanation for the stability of the dark state structure. They support a mechanism for the activation, initiated by photo-isomerisation of the chromophore to its all- trans form, that involves pivoting movements of kinked helices, which, while maintaining hydrophobic contacts in the membrane interior, can be coupled to amplified translation of the helix ends near the membrane surfaces.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2004.08.090</identifier><identifier>PMID: 15491621</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Cattle ; Cell Membrane - metabolism ; Crystallization ; Crystallography, X-Ray ; Cytoplasm - metabolism ; Detergents - metabolism ; G protein activation ; G protein-coupled receptor ; ligand binding pocket ; Lipid Bilayers - metabolism ; membrane protein structure ; Protein Structure, Tertiary ; Rhodopsin - chemistry ; Rhodopsin - metabolism ; visual pigments</subject><ispartof>Journal of molecular biology, 2004-11, Vol.343 (5), p.1409-1438</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-8692895da241b02ade6875a59a70938ccd0e7f80f6d7f3a47ef8e6cbece912443</citedby><cites>FETCH-LOGICAL-c446t-8692895da241b02ade6875a59a70938ccd0e7f80f6d7f3a47ef8e6cbece912443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmb.2004.08.090$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15491621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jade</creatorcontrib><creatorcontrib>Edwards, Patricia C.</creatorcontrib><creatorcontrib>Burghammer, Manfred</creatorcontrib><creatorcontrib>Villa, Claudio</creatorcontrib><creatorcontrib>Schertler, Gebhard F.X.</creatorcontrib><title>Structure of Bovine Rhodopsin in a Trigonal Crystal Form</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>We have determined the structure of bovine rhodopsin at 2.65 Å resolution using untwinned native crystals in the space group P3 1, by molecular replacement from the 2.8 Å model (1F88) solved in space group P4 1. The new structure reveals mechanistically important details unresolved previously, which are considered in the membrane context by docking the structure into a cryo-electron microscopy map of 2D crystals. Kinks in the transmembrane helices facilitate inter-helical polar interactions. Ordered water molecules extend the hydrogen bonding networks, linking Trp265 in the retinal binding pocket to the NPxxY motif near the cytoplasmic boundary, and the Glu113 counterion for the protonated Schiff base to the extracellular surface. Glu113 forms a complex with a water molecule hydrogen bonded between its main chain and side-chain oxygen atoms. This can be expected to stabilise the salt-bridge with the protonated Schiff base linking the 11- cis-retinal to Lys296. The cytoplasmic ends of helices H5 and H6 have been extended by one turn. The G-protein interaction sites mapped to the cytoplasmic ends of H5 and H6 and a spiral extension of H5 are elevated above the bilayer. There is a surface cavity next to the conserved Glu134-Arg135 ion pair. The cytoplasmic loops have the highest temperature factors in the structure, indicative of their flexibility when not interacting with G protein or regulatory proteins. An ordered detergent molecule is seen wrapped around the kink in H6, stabilising the structure around the potential hinge in H6. These findings provide further explanation for the stability of the dark state structure. They support a mechanism for the activation, initiated by photo-isomerisation of the chromophore to its all- trans form, that involves pivoting movements of kinked helices, which, while maintaining hydrophobic contacts in the membrane interior, can be coupled to amplified translation of the helix ends near the membrane surfaces.</description><subject>Animals</subject><subject>Cattle</subject><subject>Cell Membrane - metabolism</subject><subject>Crystallization</subject><subject>Crystallography, X-Ray</subject><subject>Cytoplasm - metabolism</subject><subject>Detergents - metabolism</subject><subject>G protein activation</subject><subject>G protein-coupled receptor</subject><subject>ligand binding pocket</subject><subject>Lipid Bilayers - metabolism</subject><subject>membrane protein structure</subject><subject>Protein Structure, Tertiary</subject><subject>Rhodopsin - chemistry</subject><subject>Rhodopsin - metabolism</subject><subject>visual pigments</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFr3DAQhUVpSLZpfkAuxafc7IxkWR7RU7p028BCoE3PQiuPGy1rayPZC_n3UdiF3lIYeJfvPYaPsWsOFQeubrfVdthUAkBWgBVo-MAWHFCXqGr8yBYAQpQCa3XBPqW0BYCmlnjOLngjNVeCLxj-nuLspjlSEfriWzj4kYpfT6EL--THIp8tHqP_G0a7K5bxJU05VyEOn9lZb3eJrk55yf6svj8uf5brhx_3y7t16aRUU_5EC9RNZ4XkGxC2I4VtYxttW9A1OtcBtT1Cr7q2r61sqUdSbkOONBdS1pfs5ri7j-F5pjSZwSdHu50dKczJKKURG6z_C_K2BgSpMsiPoIshpUi92Uc_2PhiOJg3r2Zrslfz5tUAmuw1d76cxufNQN2_xklkBr4eAcouDp6iSc7T6KjzkdxkuuDfmX8FcF2HPA</recordid><startdate>20041105</startdate><enddate>20041105</enddate><creator>Li, Jade</creator><creator>Edwards, Patricia C.</creator><creator>Burghammer, Manfred</creator><creator>Villa, Claudio</creator><creator>Schertler, Gebhard F.X.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20041105</creationdate><title>Structure of Bovine Rhodopsin in a Trigonal Crystal Form</title><author>Li, Jade ; Edwards, Patricia C. ; Burghammer, Manfred ; Villa, Claudio ; Schertler, Gebhard F.X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-8692895da241b02ade6875a59a70938ccd0e7f80f6d7f3a47ef8e6cbece912443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Cattle</topic><topic>Cell Membrane - metabolism</topic><topic>Crystallization</topic><topic>Crystallography, X-Ray</topic><topic>Cytoplasm - metabolism</topic><topic>Detergents - metabolism</topic><topic>G protein activation</topic><topic>G protein-coupled receptor</topic><topic>ligand binding pocket</topic><topic>Lipid Bilayers - metabolism</topic><topic>membrane protein structure</topic><topic>Protein Structure, Tertiary</topic><topic>Rhodopsin - chemistry</topic><topic>Rhodopsin - metabolism</topic><topic>visual pigments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jade</creatorcontrib><creatorcontrib>Edwards, Patricia C.</creatorcontrib><creatorcontrib>Burghammer, Manfred</creatorcontrib><creatorcontrib>Villa, Claudio</creatorcontrib><creatorcontrib>Schertler, Gebhard F.X.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jade</au><au>Edwards, Patricia C.</au><au>Burghammer, Manfred</au><au>Villa, Claudio</au><au>Schertler, Gebhard F.X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of Bovine Rhodopsin in a Trigonal Crystal Form</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2004-11-05</date><risdate>2004</risdate><volume>343</volume><issue>5</issue><spage>1409</spage><epage>1438</epage><pages>1409-1438</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>We have determined the structure of bovine rhodopsin at 2.65 Å resolution using untwinned native crystals in the space group P3 1, by molecular replacement from the 2.8 Å model (1F88) solved in space group P4 1. The new structure reveals mechanistically important details unresolved previously, which are considered in the membrane context by docking the structure into a cryo-electron microscopy map of 2D crystals. Kinks in the transmembrane helices facilitate inter-helical polar interactions. Ordered water molecules extend the hydrogen bonding networks, linking Trp265 in the retinal binding pocket to the NPxxY motif near the cytoplasmic boundary, and the Glu113 counterion for the protonated Schiff base to the extracellular surface. Glu113 forms a complex with a water molecule hydrogen bonded between its main chain and side-chain oxygen atoms. This can be expected to stabilise the salt-bridge with the protonated Schiff base linking the 11- cis-retinal to Lys296. The cytoplasmic ends of helices H5 and H6 have been extended by one turn. The G-protein interaction sites mapped to the cytoplasmic ends of H5 and H6 and a spiral extension of H5 are elevated above the bilayer. There is a surface cavity next to the conserved Glu134-Arg135 ion pair. The cytoplasmic loops have the highest temperature factors in the structure, indicative of their flexibility when not interacting with G protein or regulatory proteins. An ordered detergent molecule is seen wrapped around the kink in H6, stabilising the structure around the potential hinge in H6. These findings provide further explanation for the stability of the dark state structure. They support a mechanism for the activation, initiated by photo-isomerisation of the chromophore to its all- trans form, that involves pivoting movements of kinked helices, which, while maintaining hydrophobic contacts in the membrane interior, can be coupled to amplified translation of the helix ends near the membrane surfaces.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>15491621</pmid><doi>10.1016/j.jmb.2004.08.090</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2004-11, Vol.343 (5), p.1409-1438
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_66988583
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Cattle
Cell Membrane - metabolism
Crystallization
Crystallography, X-Ray
Cytoplasm - metabolism
Detergents - metabolism
G protein activation
G protein-coupled receptor
ligand binding pocket
Lipid Bilayers - metabolism
membrane protein structure
Protein Structure, Tertiary
Rhodopsin - chemistry
Rhodopsin - metabolism
visual pigments
title Structure of Bovine Rhodopsin in a Trigonal Crystal Form
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20Bovine%20Rhodopsin%20in%20a%20Trigonal%20Crystal%20Form&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Li,%20Jade&rft.date=2004-11-05&rft.volume=343&rft.issue=5&rft.spage=1409&rft.epage=1438&rft.pages=1409-1438&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2004.08.090&rft_dat=%3Cproquest_cross%3E66988583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17308046&rft_id=info:pmid/15491621&rft_els_id=S0022283604010903&rfr_iscdi=true