Patterns of intra-cluster correlation from primary care research to inform study design and analysis
To provide information concerning the magnitude of the intraclass correlation coefficient (ICC) for cluster-based studies set in primary care. Reanalysis of data from 31 cluster-based studies in primary care to estimate intraclass correlation coefficients from random effects models using maximum lik...
Gespeichert in:
Veröffentlicht in: | Journal of clinical epidemiology 2004-08, Vol.57 (8), p.785-794 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 794 |
---|---|
container_issue | 8 |
container_start_page | 785 |
container_title | Journal of clinical epidemiology |
container_volume | 57 |
creator | Adams, Geoffrey Gulliford, Martin C. Ukoumunne, Obioha C. Eldridge, Sandra Chinn, Susan Campbell, Michael J. |
description | To provide information concerning the magnitude of the intraclass correlation coefficient (ICC) for cluster-based studies set in primary care.
Reanalysis of data from 31 cluster-based studies in primary care to estimate intraclass correlation coefficients from random effects models using maximum likelihood estimation.
ICCs were estimated for 1,039 variables. The median ICC was 0.010 (interquartile range [IQR] 0 to 0.032, range 0 to 0.840). After adjusting for individual- and cluster-level characteristics, the median ICC was 0.005 (IQR 0 to 0.021). A given measure showed widely varying ICC estimates in different datasets. In six datasets, the ICCs for SF-36 physical functioning scale ranged from 0.001 to 0.055 and for SF-36 general health from 0 to 0.072. In four datasets, the ICC for systolic blood pressure ranged from 0 to 0.052 and for diastolic blood pressure from 0 to 0.108.
The precise magnitude of between-cluster variation for a given measure can rarely be estimated in advance. Studies should be designed with reference to the overall distribution of ICCs and with attention to features that increase efficiency. |
doi_str_mv | 10.1016/j.jclinepi.2003.12.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66980415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895435604000459</els_id><sourcerecordid>66980415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-f804e830be2f8a32ea53dd7142b620345a9aa80eafd9bf5aa98d7ac1862c57e63</originalsourceid><addsrcrecordid>eNqFkUuLFDEUhYMoTs_oXxgCortq86ikUjtlUEcY0IWuw-3kRlNUVdqkSuh_b5ouGXDjIlwI37mPcwi55WzPGddvh_3gxjjjMe4FY3LPxZ5x-YTsuOlMo3rBn5IdM71qWqn0FbkuZWCMd6xTz8kVV61RnWQ74r_CsmCeC02BxnnJ0LhxLfWLupQzjrDENNOQ00SPOU6QT9RBRpqxIGT3ky6p6kLKEy3L6k_UY4k_Zgqzrw_GU4nlBXkWYCz4cqs35PvHD9_u7puHL58-371_aFxrzNIEw1o0kh1QBANSICjpfcdbcdCCyVZBD2AYQvD9ISiA3vgOHDdaONWhljfkzaXvMadfK5bFTrE4HEeYMa3Fat3XEVxV8NU_4JDWXLctljMpeScNE5XSF8rlVErGYDcHKmTPKdjB_k3BnlOwXNiaQhXebu3Xw4T-UbbZXoHXGwDFwRgyzC6WR063ne75-aB3Fw6ra78jZltcxNmhjxndYn2K_9vlDx6BqlY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033173802</pqid></control><display><type>article</type><title>Patterns of intra-cluster correlation from primary care research to inform study design and analysis</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Adams, Geoffrey ; Gulliford, Martin C. ; Ukoumunne, Obioha C. ; Eldridge, Sandra ; Chinn, Susan ; Campbell, Michael J.</creator><creatorcontrib>Adams, Geoffrey ; Gulliford, Martin C. ; Ukoumunne, Obioha C. ; Eldridge, Sandra ; Chinn, Susan ; Campbell, Michael J.</creatorcontrib><description>To provide information concerning the magnitude of the intraclass correlation coefficient (ICC) for cluster-based studies set in primary care.
Reanalysis of data from 31 cluster-based studies in primary care to estimate intraclass correlation coefficients from random effects models using maximum likelihood estimation.
ICCs were estimated for 1,039 variables. The median ICC was 0.010 (interquartile range [IQR] 0 to 0.032, range 0 to 0.840). After adjusting for individual- and cluster-level characteristics, the median ICC was 0.005 (IQR 0 to 0.021). A given measure showed widely varying ICC estimates in different datasets. In six datasets, the ICCs for SF-36 physical functioning scale ranged from 0.001 to 0.055 and for SF-36 general health from 0 to 0.072. In four datasets, the ICC for systolic blood pressure ranged from 0 to 0.052 and for diastolic blood pressure from 0 to 0.108.
The precise magnitude of between-cluster variation for a given measure can rarely be estimated in advance. Studies should be designed with reference to the overall distribution of ICCs and with attention to features that increase efficiency.</description><identifier>ISSN: 0895-4356</identifier><identifier>EISSN: 1878-5921</identifier><identifier>DOI: 10.1016/j.jclinepi.2003.12.013</identifier><identifier>PMID: 15485730</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Adjustment ; Biological and medical sciences ; Blood pressure ; Cardiovascular disease ; Cluster Analysis ; Cluster randomization ; Cluster sampling ; Correlation coefficient ; Data Interpretation, Statistical ; Design effect ; Epidemiology ; Estimates ; General aspects ; General practice ; Health Services Research - methods ; Hospitals ; Humans ; Intraclass correlation ; Medical sciences ; Methodology ; Primary care ; Primary Health Care - methods ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; Randomized Controlled Trials as Topic - methods ; Research Design ; Sample size ; Studies ; Variables</subject><ispartof>Journal of clinical epidemiology, 2004-08, Vol.57 (8), p.785-794</ispartof><rights>2004 Elsevier Inc.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-f804e830be2f8a32ea53dd7142b620345a9aa80eafd9bf5aa98d7ac1862c57e63</citedby><cites>FETCH-LOGICAL-c488t-f804e830be2f8a32ea53dd7142b620345a9aa80eafd9bf5aa98d7ac1862c57e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1033173802?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994,64384,64386,64388,72340</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16476916$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15485730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adams, Geoffrey</creatorcontrib><creatorcontrib>Gulliford, Martin C.</creatorcontrib><creatorcontrib>Ukoumunne, Obioha C.</creatorcontrib><creatorcontrib>Eldridge, Sandra</creatorcontrib><creatorcontrib>Chinn, Susan</creatorcontrib><creatorcontrib>Campbell, Michael J.</creatorcontrib><title>Patterns of intra-cluster correlation from primary care research to inform study design and analysis</title><title>Journal of clinical epidemiology</title><addtitle>J Clin Epidemiol</addtitle><description>To provide information concerning the magnitude of the intraclass correlation coefficient (ICC) for cluster-based studies set in primary care.
Reanalysis of data from 31 cluster-based studies in primary care to estimate intraclass correlation coefficients from random effects models using maximum likelihood estimation.
ICCs were estimated for 1,039 variables. The median ICC was 0.010 (interquartile range [IQR] 0 to 0.032, range 0 to 0.840). After adjusting for individual- and cluster-level characteristics, the median ICC was 0.005 (IQR 0 to 0.021). A given measure showed widely varying ICC estimates in different datasets. In six datasets, the ICCs for SF-36 physical functioning scale ranged from 0.001 to 0.055 and for SF-36 general health from 0 to 0.072. In four datasets, the ICC for systolic blood pressure ranged from 0 to 0.052 and for diastolic blood pressure from 0 to 0.108.
The precise magnitude of between-cluster variation for a given measure can rarely be estimated in advance. Studies should be designed with reference to the overall distribution of ICCs and with attention to features that increase efficiency.</description><subject>Adjustment</subject><subject>Biological and medical sciences</subject><subject>Blood pressure</subject><subject>Cardiovascular disease</subject><subject>Cluster Analysis</subject><subject>Cluster randomization</subject><subject>Cluster sampling</subject><subject>Correlation coefficient</subject><subject>Data Interpretation, Statistical</subject><subject>Design effect</subject><subject>Epidemiology</subject><subject>Estimates</subject><subject>General aspects</subject><subject>General practice</subject><subject>Health Services Research - methods</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Intraclass correlation</subject><subject>Medical sciences</subject><subject>Methodology</subject><subject>Primary care</subject><subject>Primary Health Care - methods</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>Randomized Controlled Trials as Topic - methods</subject><subject>Research Design</subject><subject>Sample size</subject><subject>Studies</subject><subject>Variables</subject><issn>0895-4356</issn><issn>1878-5921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUuLFDEUhYMoTs_oXxgCortq86ikUjtlUEcY0IWuw-3kRlNUVdqkSuh_b5ouGXDjIlwI37mPcwi55WzPGddvh_3gxjjjMe4FY3LPxZ5x-YTsuOlMo3rBn5IdM71qWqn0FbkuZWCMd6xTz8kVV61RnWQ74r_CsmCeC02BxnnJ0LhxLfWLupQzjrDENNOQ00SPOU6QT9RBRpqxIGT3ky6p6kLKEy3L6k_UY4k_Zgqzrw_GU4nlBXkWYCz4cqs35PvHD9_u7puHL58-371_aFxrzNIEw1o0kh1QBANSICjpfcdbcdCCyVZBD2AYQvD9ISiA3vgOHDdaONWhljfkzaXvMadfK5bFTrE4HEeYMa3Fat3XEVxV8NU_4JDWXLctljMpeScNE5XSF8rlVErGYDcHKmTPKdjB_k3BnlOwXNiaQhXebu3Xw4T-UbbZXoHXGwDFwRgyzC6WR063ne75-aB3Fw6ra78jZltcxNmhjxndYn2K_9vlDx6BqlY</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>Adams, Geoffrey</creator><creator>Gulliford, Martin C.</creator><creator>Ukoumunne, Obioha C.</creator><creator>Eldridge, Sandra</creator><creator>Chinn, Susan</creator><creator>Campbell, Michael J.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7RV</scope><scope>7T2</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20040801</creationdate><title>Patterns of intra-cluster correlation from primary care research to inform study design and analysis</title><author>Adams, Geoffrey ; Gulliford, Martin C. ; Ukoumunne, Obioha C. ; Eldridge, Sandra ; Chinn, Susan ; Campbell, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-f804e830be2f8a32ea53dd7142b620345a9aa80eafd9bf5aa98d7ac1862c57e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adjustment</topic><topic>Biological and medical sciences</topic><topic>Blood pressure</topic><topic>Cardiovascular disease</topic><topic>Cluster Analysis</topic><topic>Cluster randomization</topic><topic>Cluster sampling</topic><topic>Correlation coefficient</topic><topic>Data Interpretation, Statistical</topic><topic>Design effect</topic><topic>Epidemiology</topic><topic>Estimates</topic><topic>General aspects</topic><topic>General practice</topic><topic>Health Services Research - methods</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Intraclass correlation</topic><topic>Medical sciences</topic><topic>Methodology</topic><topic>Primary care</topic><topic>Primary Health Care - methods</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>Randomized Controlled Trials as Topic - methods</topic><topic>Research Design</topic><topic>Sample size</topic><topic>Studies</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adams, Geoffrey</creatorcontrib><creatorcontrib>Gulliford, Martin C.</creatorcontrib><creatorcontrib>Ukoumunne, Obioha C.</creatorcontrib><creatorcontrib>Eldridge, Sandra</creatorcontrib><creatorcontrib>Chinn, Susan</creatorcontrib><creatorcontrib>Campbell, Michael J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adams, Geoffrey</au><au>Gulliford, Martin C.</au><au>Ukoumunne, Obioha C.</au><au>Eldridge, Sandra</au><au>Chinn, Susan</au><au>Campbell, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patterns of intra-cluster correlation from primary care research to inform study design and analysis</atitle><jtitle>Journal of clinical epidemiology</jtitle><addtitle>J Clin Epidemiol</addtitle><date>2004-08-01</date><risdate>2004</risdate><volume>57</volume><issue>8</issue><spage>785</spage><epage>794</epage><pages>785-794</pages><issn>0895-4356</issn><eissn>1878-5921</eissn><abstract>To provide information concerning the magnitude of the intraclass correlation coefficient (ICC) for cluster-based studies set in primary care.
Reanalysis of data from 31 cluster-based studies in primary care to estimate intraclass correlation coefficients from random effects models using maximum likelihood estimation.
ICCs were estimated for 1,039 variables. The median ICC was 0.010 (interquartile range [IQR] 0 to 0.032, range 0 to 0.840). After adjusting for individual- and cluster-level characteristics, the median ICC was 0.005 (IQR 0 to 0.021). A given measure showed widely varying ICC estimates in different datasets. In six datasets, the ICCs for SF-36 physical functioning scale ranged from 0.001 to 0.055 and for SF-36 general health from 0 to 0.072. In four datasets, the ICC for systolic blood pressure ranged from 0 to 0.052 and for diastolic blood pressure from 0 to 0.108.
The precise magnitude of between-cluster variation for a given measure can rarely be estimated in advance. Studies should be designed with reference to the overall distribution of ICCs and with attention to features that increase efficiency.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>15485730</pmid><doi>10.1016/j.jclinepi.2003.12.013</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4356 |
ispartof | Journal of clinical epidemiology, 2004-08, Vol.57 (8), p.785-794 |
issn | 0895-4356 1878-5921 |
language | eng |
recordid | cdi_proquest_miscellaneous_66980415 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland |
subjects | Adjustment Biological and medical sciences Blood pressure Cardiovascular disease Cluster Analysis Cluster randomization Cluster sampling Correlation coefficient Data Interpretation, Statistical Design effect Epidemiology Estimates General aspects General practice Health Services Research - methods Hospitals Humans Intraclass correlation Medical sciences Methodology Primary care Primary Health Care - methods Public health. Hygiene Public health. Hygiene-occupational medicine Randomized Controlled Trials as Topic - methods Research Design Sample size Studies Variables |
title | Patterns of intra-cluster correlation from primary care research to inform study design and analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A47%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patterns%20of%20intra-cluster%20correlation%20from%20primary%20care%20research%20to%20inform%20study%20design%20and%20analysis&rft.jtitle=Journal%20of%20clinical%20epidemiology&rft.au=Adams,%20Geoffrey&rft.date=2004-08-01&rft.volume=57&rft.issue=8&rft.spage=785&rft.epage=794&rft.pages=785-794&rft.issn=0895-4356&rft.eissn=1878-5921&rft_id=info:doi/10.1016/j.jclinepi.2003.12.013&rft_dat=%3Cproquest_cross%3E66980415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033173802&rft_id=info:pmid/15485730&rft_els_id=S0895435604000459&rfr_iscdi=true |