An ordinary differential equation model for the multistep transformation to cancer

Cancer is viewed as a multistep process whereby a normal cell is transformed into a cancer cell through the acquisition of mutations. We reduce the complexities of cancer progression to a simple set of underlying rules that govern the transformation of normal cells to malignant cells. In doing so, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2004-12, Vol.231 (4), p.515-524
Hauptverfasser: Spencer, Sabrina L., Berryman, Matthew J., García, José A., Abbott, Derek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 524
container_issue 4
container_start_page 515
container_title Journal of theoretical biology
container_volume 231
creator Spencer, Sabrina L.
Berryman, Matthew J.
García, José A.
Abbott, Derek
description Cancer is viewed as a multistep process whereby a normal cell is transformed into a cancer cell through the acquisition of mutations. We reduce the complexities of cancer progression to a simple set of underlying rules that govern the transformation of normal cells to malignant cells. In doing so, we derive an ordinary differential equation model that explores how the balance of angiogenesis, cell death rates, genetic instability, and replication rates give rise to different kinetics in the development of cancer. The key predictions of the model are that cancer develops fastest through a particular ordering of mutations and that mutations in genes that maintain genomic integrity would be the most deleterious type of mutations to inherit. In addition, we perform a sensitivity analysis on the parameters included in the model to determine the probable contribution of each. This paper presents a novel approach to viewing the genetic basis of cancer from a systems biology perspective and provides the groundwork for other models that can be directly tied to clinical and molecular data.
doi_str_mv 10.1016/j.jtbi.2004.07.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66977527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519304003273</els_id><sourcerecordid>66977527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-c645f7f5218f7177c40553c76394f93c30e796d6377bcaea460f321265d1f1e43</originalsourceid><addsrcrecordid>eNqFkM2KFDEURoMoTjv6Ai4kK3dV3vxXgZth0FEYEMRZh3TqBtNUVXqSlODbT5pucOesLlzO-RaHkPcMegZMfzr0h7qPPQeQPZgeQL8gOwaj6gYl2UuyA-C8U2wUV-RNKQcAGKXQr8kVU3IYFB925OfNSlOe4uryXzrFEDDjWqObKT5ursa00iVNONOQMq2_kS7bXGOpeKQ1u7W093LGaqLerR7zW_IquLngu8u9Jg9fv_y6_dbd_7j7fntz33nJTe28liqYoDgbgmHGeAlKCW-0GGUYhReAZtSTFsbsvUMnNQTBGddqYoGhFNfk43n3mNPjhqXaJRaP8-xWTFuxWo_GKG6eBZkZWjumGsjPoM-plIzBHnNcWhnLwJ6S24M9Jben5BaMbVqTPlzWt_2C0z_l0rgBn88Athh_ImZbfMRWaooZfbVTiv_bfwKo_JI-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17800615</pqid></control><display><type>article</type><title>An ordinary differential equation model for the multistep transformation to cancer</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Spencer, Sabrina L. ; Berryman, Matthew J. ; García, José A. ; Abbott, Derek</creator><creatorcontrib>Spencer, Sabrina L. ; Berryman, Matthew J. ; García, José A. ; Abbott, Derek</creatorcontrib><description>Cancer is viewed as a multistep process whereby a normal cell is transformed into a cancer cell through the acquisition of mutations. We reduce the complexities of cancer progression to a simple set of underlying rules that govern the transformation of normal cells to malignant cells. In doing so, we derive an ordinary differential equation model that explores how the balance of angiogenesis, cell death rates, genetic instability, and replication rates give rise to different kinetics in the development of cancer. The key predictions of the model are that cancer develops fastest through a particular ordering of mutations and that mutations in genes that maintain genomic integrity would be the most deleterious type of mutations to inherit. In addition, we perform a sensitivity analysis on the parameters included in the model to determine the probable contribution of each. This paper presents a novel approach to viewing the genetic basis of cancer from a systems biology perspective and provides the groundwork for other models that can be directly tied to clinical and molecular data.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2004.07.006</identifier><identifier>PMID: 15488528</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Cancer ; Cell Division - genetics ; Cell Transformation, Neoplastic - genetics ; Cell Transformation, Neoplastic - pathology ; Genetic instability ; Hallmarks of cancer ; Humans ; Mutation ; Neoplasms - genetics ; Neoplasms - pathology ; Neovascularization, Pathologic - genetics ; Oncogenesis ; Systems Biology ; Tumor progression</subject><ispartof>Journal of theoretical biology, 2004-12, Vol.231 (4), p.515-524</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-c645f7f5218f7177c40553c76394f93c30e796d6377bcaea460f321265d1f1e43</citedby><cites>FETCH-LOGICAL-c427t-c645f7f5218f7177c40553c76394f93c30e796d6377bcaea460f321265d1f1e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2004.07.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15488528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spencer, Sabrina L.</creatorcontrib><creatorcontrib>Berryman, Matthew J.</creatorcontrib><creatorcontrib>García, José A.</creatorcontrib><creatorcontrib>Abbott, Derek</creatorcontrib><title>An ordinary differential equation model for the multistep transformation to cancer</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>Cancer is viewed as a multistep process whereby a normal cell is transformed into a cancer cell through the acquisition of mutations. We reduce the complexities of cancer progression to a simple set of underlying rules that govern the transformation of normal cells to malignant cells. In doing so, we derive an ordinary differential equation model that explores how the balance of angiogenesis, cell death rates, genetic instability, and replication rates give rise to different kinetics in the development of cancer. The key predictions of the model are that cancer develops fastest through a particular ordering of mutations and that mutations in genes that maintain genomic integrity would be the most deleterious type of mutations to inherit. In addition, we perform a sensitivity analysis on the parameters included in the model to determine the probable contribution of each. This paper presents a novel approach to viewing the genetic basis of cancer from a systems biology perspective and provides the groundwork for other models that can be directly tied to clinical and molecular data.</description><subject>Cancer</subject><subject>Cell Division - genetics</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Cell Transformation, Neoplastic - pathology</subject><subject>Genetic instability</subject><subject>Hallmarks of cancer</subject><subject>Humans</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - pathology</subject><subject>Neovascularization, Pathologic - genetics</subject><subject>Oncogenesis</subject><subject>Systems Biology</subject><subject>Tumor progression</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM2KFDEURoMoTjv6Ai4kK3dV3vxXgZth0FEYEMRZh3TqBtNUVXqSlODbT5pucOesLlzO-RaHkPcMegZMfzr0h7qPPQeQPZgeQL8gOwaj6gYl2UuyA-C8U2wUV-RNKQcAGKXQr8kVU3IYFB925OfNSlOe4uryXzrFEDDjWqObKT5ursa00iVNONOQMq2_kS7bXGOpeKQ1u7W093LGaqLerR7zW_IquLngu8u9Jg9fv_y6_dbd_7j7fntz33nJTe28liqYoDgbgmHGeAlKCW-0GGUYhReAZtSTFsbsvUMnNQTBGddqYoGhFNfk43n3mNPjhqXaJRaP8-xWTFuxWo_GKG6eBZkZWjumGsjPoM-plIzBHnNcWhnLwJ6S24M9Jben5BaMbVqTPlzWt_2C0z_l0rgBn88Athh_ImZbfMRWaooZfbVTiv_bfwKo_JI-</recordid><startdate>20041221</startdate><enddate>20041221</enddate><creator>Spencer, Sabrina L.</creator><creator>Berryman, Matthew J.</creator><creator>García, José A.</creator><creator>Abbott, Derek</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20041221</creationdate><title>An ordinary differential equation model for the multistep transformation to cancer</title><author>Spencer, Sabrina L. ; Berryman, Matthew J. ; García, José A. ; Abbott, Derek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-c645f7f5218f7177c40553c76394f93c30e796d6377bcaea460f321265d1f1e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Cancer</topic><topic>Cell Division - genetics</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Cell Transformation, Neoplastic - pathology</topic><topic>Genetic instability</topic><topic>Hallmarks of cancer</topic><topic>Humans</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - pathology</topic><topic>Neovascularization, Pathologic - genetics</topic><topic>Oncogenesis</topic><topic>Systems Biology</topic><topic>Tumor progression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spencer, Sabrina L.</creatorcontrib><creatorcontrib>Berryman, Matthew J.</creatorcontrib><creatorcontrib>García, José A.</creatorcontrib><creatorcontrib>Abbott, Derek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spencer, Sabrina L.</au><au>Berryman, Matthew J.</au><au>García, José A.</au><au>Abbott, Derek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ordinary differential equation model for the multistep transformation to cancer</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2004-12-21</date><risdate>2004</risdate><volume>231</volume><issue>4</issue><spage>515</spage><epage>524</epage><pages>515-524</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>Cancer is viewed as a multistep process whereby a normal cell is transformed into a cancer cell through the acquisition of mutations. We reduce the complexities of cancer progression to a simple set of underlying rules that govern the transformation of normal cells to malignant cells. In doing so, we derive an ordinary differential equation model that explores how the balance of angiogenesis, cell death rates, genetic instability, and replication rates give rise to different kinetics in the development of cancer. The key predictions of the model are that cancer develops fastest through a particular ordering of mutations and that mutations in genes that maintain genomic integrity would be the most deleterious type of mutations to inherit. In addition, we perform a sensitivity analysis on the parameters included in the model to determine the probable contribution of each. This paper presents a novel approach to viewing the genetic basis of cancer from a systems biology perspective and provides the groundwork for other models that can be directly tied to clinical and molecular data.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>15488528</pmid><doi>10.1016/j.jtbi.2004.07.006</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2004-12, Vol.231 (4), p.515-524
issn 0022-5193
1095-8541
language eng
recordid cdi_proquest_miscellaneous_66977527
source MEDLINE; Elsevier ScienceDirect Journals
subjects Cancer
Cell Division - genetics
Cell Transformation, Neoplastic - genetics
Cell Transformation, Neoplastic - pathology
Genetic instability
Hallmarks of cancer
Humans
Mutation
Neoplasms - genetics
Neoplasms - pathology
Neovascularization, Pathologic - genetics
Oncogenesis
Systems Biology
Tumor progression
title An ordinary differential equation model for the multistep transformation to cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ordinary%20differential%20equation%20model%20for%20the%20multistep%20transformation%20to%20cancer&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Spencer,%20Sabrina%20L.&rft.date=2004-12-21&rft.volume=231&rft.issue=4&rft.spage=515&rft.epage=524&rft.pages=515-524&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2004.07.006&rft_dat=%3Cproquest_cross%3E66977527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17800615&rft_id=info:pmid/15488528&rft_els_id=S0022519304003273&rfr_iscdi=true