An ordinary differential equation model for the multistep transformation to cancer
Cancer is viewed as a multistep process whereby a normal cell is transformed into a cancer cell through the acquisition of mutations. We reduce the complexities of cancer progression to a simple set of underlying rules that govern the transformation of normal cells to malignant cells. In doing so, w...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2004-12, Vol.231 (4), p.515-524 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 524 |
---|---|
container_issue | 4 |
container_start_page | 515 |
container_title | Journal of theoretical biology |
container_volume | 231 |
creator | Spencer, Sabrina L. Berryman, Matthew J. García, José A. Abbott, Derek |
description | Cancer is viewed as a multistep process whereby a normal cell is transformed into a cancer cell through the acquisition of mutations. We reduce the complexities of cancer progression to a simple set of underlying rules that govern the transformation of normal cells to malignant cells. In doing so, we derive an ordinary differential equation model that explores how the balance of angiogenesis, cell death rates, genetic instability, and replication rates give rise to different kinetics in the development of cancer. The key predictions of the model are that cancer develops fastest through a particular ordering of mutations and that mutations in genes that maintain genomic integrity would be the most deleterious type of mutations to inherit. In addition, we perform a sensitivity analysis on the parameters included in the model to determine the probable contribution of each. This paper presents a novel approach to viewing the genetic basis of cancer from a systems biology perspective and provides the groundwork for other models that can be directly tied to clinical and molecular data. |
doi_str_mv | 10.1016/j.jtbi.2004.07.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66977527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519304003273</els_id><sourcerecordid>66977527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-c645f7f5218f7177c40553c76394f93c30e796d6377bcaea460f321265d1f1e43</originalsourceid><addsrcrecordid>eNqFkM2KFDEURoMoTjv6Ai4kK3dV3vxXgZth0FEYEMRZh3TqBtNUVXqSlODbT5pucOesLlzO-RaHkPcMegZMfzr0h7qPPQeQPZgeQL8gOwaj6gYl2UuyA-C8U2wUV-RNKQcAGKXQr8kVU3IYFB925OfNSlOe4uryXzrFEDDjWqObKT5ursa00iVNONOQMq2_kS7bXGOpeKQ1u7W093LGaqLerR7zW_IquLngu8u9Jg9fv_y6_dbd_7j7fntz33nJTe28liqYoDgbgmHGeAlKCW-0GGUYhReAZtSTFsbsvUMnNQTBGddqYoGhFNfk43n3mNPjhqXaJRaP8-xWTFuxWo_GKG6eBZkZWjumGsjPoM-plIzBHnNcWhnLwJ6S24M9Jben5BaMbVqTPlzWt_2C0z_l0rgBn88Athh_ImZbfMRWaooZfbVTiv_bfwKo_JI-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17800615</pqid></control><display><type>article</type><title>An ordinary differential equation model for the multistep transformation to cancer</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Spencer, Sabrina L. ; Berryman, Matthew J. ; García, José A. ; Abbott, Derek</creator><creatorcontrib>Spencer, Sabrina L. ; Berryman, Matthew J. ; García, José A. ; Abbott, Derek</creatorcontrib><description>Cancer is viewed as a multistep process whereby a normal cell is transformed into a cancer cell through the acquisition of mutations. We reduce the complexities of cancer progression to a simple set of underlying rules that govern the transformation of normal cells to malignant cells. In doing so, we derive an ordinary differential equation model that explores how the balance of angiogenesis, cell death rates, genetic instability, and replication rates give rise to different kinetics in the development of cancer. The key predictions of the model are that cancer develops fastest through a particular ordering of mutations and that mutations in genes that maintain genomic integrity would be the most deleterious type of mutations to inherit. In addition, we perform a sensitivity analysis on the parameters included in the model to determine the probable contribution of each. This paper presents a novel approach to viewing the genetic basis of cancer from a systems biology perspective and provides the groundwork for other models that can be directly tied to clinical and molecular data.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2004.07.006</identifier><identifier>PMID: 15488528</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Cancer ; Cell Division - genetics ; Cell Transformation, Neoplastic - genetics ; Cell Transformation, Neoplastic - pathology ; Genetic instability ; Hallmarks of cancer ; Humans ; Mutation ; Neoplasms - genetics ; Neoplasms - pathology ; Neovascularization, Pathologic - genetics ; Oncogenesis ; Systems Biology ; Tumor progression</subject><ispartof>Journal of theoretical biology, 2004-12, Vol.231 (4), p.515-524</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-c645f7f5218f7177c40553c76394f93c30e796d6377bcaea460f321265d1f1e43</citedby><cites>FETCH-LOGICAL-c427t-c645f7f5218f7177c40553c76394f93c30e796d6377bcaea460f321265d1f1e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2004.07.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15488528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spencer, Sabrina L.</creatorcontrib><creatorcontrib>Berryman, Matthew J.</creatorcontrib><creatorcontrib>García, José A.</creatorcontrib><creatorcontrib>Abbott, Derek</creatorcontrib><title>An ordinary differential equation model for the multistep transformation to cancer</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>Cancer is viewed as a multistep process whereby a normal cell is transformed into a cancer cell through the acquisition of mutations. We reduce the complexities of cancer progression to a simple set of underlying rules that govern the transformation of normal cells to malignant cells. In doing so, we derive an ordinary differential equation model that explores how the balance of angiogenesis, cell death rates, genetic instability, and replication rates give rise to different kinetics in the development of cancer. The key predictions of the model are that cancer develops fastest through a particular ordering of mutations and that mutations in genes that maintain genomic integrity would be the most deleterious type of mutations to inherit. In addition, we perform a sensitivity analysis on the parameters included in the model to determine the probable contribution of each. This paper presents a novel approach to viewing the genetic basis of cancer from a systems biology perspective and provides the groundwork for other models that can be directly tied to clinical and molecular data.</description><subject>Cancer</subject><subject>Cell Division - genetics</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Cell Transformation, Neoplastic - pathology</subject><subject>Genetic instability</subject><subject>Hallmarks of cancer</subject><subject>Humans</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - pathology</subject><subject>Neovascularization, Pathologic - genetics</subject><subject>Oncogenesis</subject><subject>Systems Biology</subject><subject>Tumor progression</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM2KFDEURoMoTjv6Ai4kK3dV3vxXgZth0FEYEMRZh3TqBtNUVXqSlODbT5pucOesLlzO-RaHkPcMegZMfzr0h7qPPQeQPZgeQL8gOwaj6gYl2UuyA-C8U2wUV-RNKQcAGKXQr8kVU3IYFB925OfNSlOe4uryXzrFEDDjWqObKT5ursa00iVNONOQMq2_kS7bXGOpeKQ1u7W093LGaqLerR7zW_IquLngu8u9Jg9fv_y6_dbd_7j7fntz33nJTe28liqYoDgbgmHGeAlKCW-0GGUYhReAZtSTFsbsvUMnNQTBGddqYoGhFNfk43n3mNPjhqXaJRaP8-xWTFuxWo_GKG6eBZkZWjumGsjPoM-plIzBHnNcWhnLwJ6S24M9Jben5BaMbVqTPlzWt_2C0z_l0rgBn88Athh_ImZbfMRWaooZfbVTiv_bfwKo_JI-</recordid><startdate>20041221</startdate><enddate>20041221</enddate><creator>Spencer, Sabrina L.</creator><creator>Berryman, Matthew J.</creator><creator>García, José A.</creator><creator>Abbott, Derek</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20041221</creationdate><title>An ordinary differential equation model for the multistep transformation to cancer</title><author>Spencer, Sabrina L. ; Berryman, Matthew J. ; García, José A. ; Abbott, Derek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-c645f7f5218f7177c40553c76394f93c30e796d6377bcaea460f321265d1f1e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Cancer</topic><topic>Cell Division - genetics</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Cell Transformation, Neoplastic - pathology</topic><topic>Genetic instability</topic><topic>Hallmarks of cancer</topic><topic>Humans</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - pathology</topic><topic>Neovascularization, Pathologic - genetics</topic><topic>Oncogenesis</topic><topic>Systems Biology</topic><topic>Tumor progression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spencer, Sabrina L.</creatorcontrib><creatorcontrib>Berryman, Matthew J.</creatorcontrib><creatorcontrib>García, José A.</creatorcontrib><creatorcontrib>Abbott, Derek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spencer, Sabrina L.</au><au>Berryman, Matthew J.</au><au>García, José A.</au><au>Abbott, Derek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ordinary differential equation model for the multistep transformation to cancer</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2004-12-21</date><risdate>2004</risdate><volume>231</volume><issue>4</issue><spage>515</spage><epage>524</epage><pages>515-524</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>Cancer is viewed as a multistep process whereby a normal cell is transformed into a cancer cell through the acquisition of mutations. We reduce the complexities of cancer progression to a simple set of underlying rules that govern the transformation of normal cells to malignant cells. In doing so, we derive an ordinary differential equation model that explores how the balance of angiogenesis, cell death rates, genetic instability, and replication rates give rise to different kinetics in the development of cancer. The key predictions of the model are that cancer develops fastest through a particular ordering of mutations and that mutations in genes that maintain genomic integrity would be the most deleterious type of mutations to inherit. In addition, we perform a sensitivity analysis on the parameters included in the model to determine the probable contribution of each. This paper presents a novel approach to viewing the genetic basis of cancer from a systems biology perspective and provides the groundwork for other models that can be directly tied to clinical and molecular data.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>15488528</pmid><doi>10.1016/j.jtbi.2004.07.006</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2004-12, Vol.231 (4), p.515-524 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_proquest_miscellaneous_66977527 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Cancer Cell Division - genetics Cell Transformation, Neoplastic - genetics Cell Transformation, Neoplastic - pathology Genetic instability Hallmarks of cancer Humans Mutation Neoplasms - genetics Neoplasms - pathology Neovascularization, Pathologic - genetics Oncogenesis Systems Biology Tumor progression |
title | An ordinary differential equation model for the multistep transformation to cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ordinary%20differential%20equation%20model%20for%20the%20multistep%20transformation%20to%20cancer&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Spencer,%20Sabrina%20L.&rft.date=2004-12-21&rft.volume=231&rft.issue=4&rft.spage=515&rft.epage=524&rft.pages=515-524&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2004.07.006&rft_dat=%3Cproquest_cross%3E66977527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17800615&rft_id=info:pmid/15488528&rft_els_id=S0022519304003273&rfr_iscdi=true |