Hepatitis C viral proteins interact with Smad3 and differentially regulate TGF-β/Smad3-mediated transcriptional activation

Transforming growth factor- β (TGF- β ) is a pleiotropic cytokine implicated as a pathogenic mediator in various liver diseases. Enhanced TGF- β production and lack of TGF- β responses are often observed during hepatitis C virus (HCV) infection. In this study, we demonstrate that TGF- β -mediated tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2004-10, Vol.23 (47), p.7821-7838
Hauptverfasser: Cheng, Pei-Lin, Chang, Meng-Hsiung, Chao, Chi-Hong, Lee, Yan-Hwa Wu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7838
container_issue 47
container_start_page 7821
container_title Oncogene
container_volume 23
creator Cheng, Pei-Lin
Chang, Meng-Hsiung
Chao, Chi-Hong
Lee, Yan-Hwa Wu
description Transforming growth factor- β (TGF- β ) is a pleiotropic cytokine implicated as a pathogenic mediator in various liver diseases. Enhanced TGF- β production and lack of TGF- β responses are often observed during hepatitis C virus (HCV) infection. In this study, we demonstrate that TGF- β -mediated transactivation is decreased in cells exogenously expressing the intact HCV polyprotein. Among 10 viral products of HCV, only core and nonstructural protein 3 (NS3) physically interact with the MH1 (Mad homology 1) region of the Smad3 and block TGF- β /Smad3-mediated transcriptional activation through interference with the DNA-binding ability of Smad3, not the nuclear translocation. However, the interactive domain of NS3 extends to the MH2 (Mad homology 2) region of Smad3 and a distinction is found between effects mediated, respectively, by these two viral proteins. HCV core, in the presence or absence of TGF- β , has a stronger suppressive effect on the DNA-binding and transactivation ability of Smad3 than NS3. Although HCV core, NS3, and the HCV subgenomic replicon all attenuate TGF- β /Smad3-mediated apoptosis, only HCV core represses TGF- β -induced G1 phase arrest through downregulation of the TGF- β -induced p21 promoter activation. Along with this, HCV core, rather than NS3, exhibits a significant inhibitory effect on the binding of Smad3/Sp1 complex to the proximal p21 promoter in response to TGF- β . In conclusion, HCV viral proteins interact with the TGF- β signaling mediator Smad3 and differentially impair TGF- β /Smad3-mediated transactivation and growth inhibition. This functional counteraction of TGF- β responses provides insights into possible mechanisms, whereby the HCV oncogenic proteins antagonize the host defenses during hepatocarcinogenesis.
doi_str_mv 10.1038/sj.onc.1208066
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_66973104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A189099822</galeid><sourcerecordid>A189099822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-7f2a6d1e0a4a2d7c31dda838a21e4e66d99a983ca24ff156ea823082accb70083</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhgdR7Fq99VIConezm6_JJJdlsa1Q8MJ6PZwmZ9Yss5k1yVSK_6o_pL_JrDuwIIjkIuTkOe_5eKvqLaNLRoVepe1yDHbJONVUqWfVgslW1U1j5PNqQU1Da8MFP6tepbSllLaG8pfVGWuEkLSRi-rXNe4h--wTWZN7H2Eg-zhm9CERHzJGsJn89Pk7-boDJwgER5zve4wYsodheCARN9MAGcnt1WX99Lj6A9Y7dL4EHckRQrLR77MfQ5Evgv4eDo_X1YsehoRv5vu8-nb56XZ9Xd98ufq8vriprTQm123PQTmGFCRw11rBnAMtNHCGEpVyxoDRwgKXfc8ahaC5oJqDtXctpVqcVx-PumWyHxOm3O18sjgMEHCcUqeUaQWj8r8ga1tJOW0L-P4vcDtOsUyXOq4kE0LTtinU8khtYMDOh34su7DlONx5OwbsfYlfMG2oMZrzU4KNY0oR-24f_Q7iQ8dod7C7S9uu2N3NdpeEd3Mf011Z-Amf_S3AhxmAZGHoixfWpxOnSnGuD9zqyKXyFTYYTwP9o_RvTcrEnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641338075</pqid></control><display><type>article</type><title>Hepatitis C viral proteins interact with Smad3 and differentially regulate TGF-β/Smad3-mediated transcriptional activation</title><source>MEDLINE</source><source>Nature</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Cheng, Pei-Lin ; Chang, Meng-Hsiung ; Chao, Chi-Hong ; Lee, Yan-Hwa Wu</creator><creatorcontrib>Cheng, Pei-Lin ; Chang, Meng-Hsiung ; Chao, Chi-Hong ; Lee, Yan-Hwa Wu</creatorcontrib><description>Transforming growth factor- β (TGF- β ) is a pleiotropic cytokine implicated as a pathogenic mediator in various liver diseases. Enhanced TGF- β production and lack of TGF- β responses are often observed during hepatitis C virus (HCV) infection. In this study, we demonstrate that TGF- β -mediated transactivation is decreased in cells exogenously expressing the intact HCV polyprotein. Among 10 viral products of HCV, only core and nonstructural protein 3 (NS3) physically interact with the MH1 (Mad homology 1) region of the Smad3 and block TGF- β /Smad3-mediated transcriptional activation through interference with the DNA-binding ability of Smad3, not the nuclear translocation. However, the interactive domain of NS3 extends to the MH2 (Mad homology 2) region of Smad3 and a distinction is found between effects mediated, respectively, by these two viral proteins. HCV core, in the presence or absence of TGF- β , has a stronger suppressive effect on the DNA-binding and transactivation ability of Smad3 than NS3. Although HCV core, NS3, and the HCV subgenomic replicon all attenuate TGF- β /Smad3-mediated apoptosis, only HCV core represses TGF- β -induced G1 phase arrest through downregulation of the TGF- β -induced p21 promoter activation. Along with this, HCV core, rather than NS3, exhibits a significant inhibitory effect on the binding of Smad3/Sp1 complex to the proximal p21 promoter in response to TGF- β . In conclusion, HCV viral proteins interact with the TGF- β signaling mediator Smad3 and differentially impair TGF- β /Smad3-mediated transactivation and growth inhibition. This functional counteraction of TGF- β responses provides insights into possible mechanisms, whereby the HCV oncogenic proteins antagonize the host defenses during hepatocarcinogenesis.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/sj.onc.1208066</identifier><identifier>PMID: 15334054</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Apoptosis ; Biological and medical sciences ; Carcinoma, Hepatocellular ; Cell Biology ; Cell Line, Tumor ; Cell physiology ; Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes ; Cyclin-dependent kinase inhibitor p21 ; Cytokines ; Deoxyribonucleic acid ; DNA ; DNA-Binding Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; G1 phase ; G1 Phase - drug effects ; G1 Phase - physiology ; Hepacivirus ; Hepatitis C ; Hepatitis C virus ; Homology ; Human Genetics ; Human viral diseases ; Humans ; Infectious diseases ; Internal Medicine ; Liver diseases ; Liver Neoplasms ; Medical sciences ; Medicine ; Medicine &amp; Public Health ; Molecular and cellular biology ; Nuclear transport ; Oncology ; original-paper ; Plasmids - genetics ; Polymerase Chain Reaction ; Proteins ; Recombinant Fusion Proteins - metabolism ; Smad3 Protein ; Sp1 protein ; Trans-Activators - metabolism ; Transcription activation ; Transcription Factors - metabolism ; Transcriptional Activation ; Transforming Growth Factor beta - metabolism ; Transforming Growth Factor beta - pharmacology ; Transforming growth factor-b ; Viral Core Proteins - metabolism ; Viral diseases ; Viral diseases of the digestive system ; Viral hepatitis ; Viral Nonstructural Proteins - metabolism ; Viral Proteins - metabolism</subject><ispartof>Oncogene, 2004-10, Vol.23 (47), p.7821-7838</ispartof><rights>Springer Nature Limited 2004</rights><rights>2004 INIST-CNRS</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Nature Publishing Group 2004.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-7f2a6d1e0a4a2d7c31dda838a21e4e66d99a983ca24ff156ea823082accb70083</citedby><cites>FETCH-LOGICAL-c499t-7f2a6d1e0a4a2d7c31dda838a21e4e66d99a983ca24ff156ea823082accb70083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16189284$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15334054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Pei-Lin</creatorcontrib><creatorcontrib>Chang, Meng-Hsiung</creatorcontrib><creatorcontrib>Chao, Chi-Hong</creatorcontrib><creatorcontrib>Lee, Yan-Hwa Wu</creatorcontrib><title>Hepatitis C viral proteins interact with Smad3 and differentially regulate TGF-β/Smad3-mediated transcriptional activation</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Transforming growth factor- β (TGF- β ) is a pleiotropic cytokine implicated as a pathogenic mediator in various liver diseases. Enhanced TGF- β production and lack of TGF- β responses are often observed during hepatitis C virus (HCV) infection. In this study, we demonstrate that TGF- β -mediated transactivation is decreased in cells exogenously expressing the intact HCV polyprotein. Among 10 viral products of HCV, only core and nonstructural protein 3 (NS3) physically interact with the MH1 (Mad homology 1) region of the Smad3 and block TGF- β /Smad3-mediated transcriptional activation through interference with the DNA-binding ability of Smad3, not the nuclear translocation. However, the interactive domain of NS3 extends to the MH2 (Mad homology 2) region of Smad3 and a distinction is found between effects mediated, respectively, by these two viral proteins. HCV core, in the presence or absence of TGF- β , has a stronger suppressive effect on the DNA-binding and transactivation ability of Smad3 than NS3. Although HCV core, NS3, and the HCV subgenomic replicon all attenuate TGF- β /Smad3-mediated apoptosis, only HCV core represses TGF- β -induced G1 phase arrest through downregulation of the TGF- β -induced p21 promoter activation. Along with this, HCV core, rather than NS3, exhibits a significant inhibitory effect on the binding of Smad3/Sp1 complex to the proximal p21 promoter in response to TGF- β . In conclusion, HCV viral proteins interact with the TGF- β signaling mediator Smad3 and differentially impair TGF- β /Smad3-mediated transactivation and growth inhibition. This functional counteraction of TGF- β responses provides insights into possible mechanisms, whereby the HCV oncogenic proteins antagonize the host defenses during hepatocarcinogenesis.</description><subject>Apoptosis</subject><subject>Biological and medical sciences</subject><subject>Carcinoma, Hepatocellular</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Cell physiology</subject><subject>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</subject><subject>Cyclin-dependent kinase inhibitor p21</subject><subject>Cytokines</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>G1 phase</subject><subject>G1 Phase - drug effects</subject><subject>G1 Phase - physiology</subject><subject>Hepacivirus</subject><subject>Hepatitis C</subject><subject>Hepatitis C virus</subject><subject>Homology</subject><subject>Human Genetics</subject><subject>Human viral diseases</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Internal Medicine</subject><subject>Liver diseases</subject><subject>Liver Neoplasms</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Molecular and cellular biology</subject><subject>Nuclear transport</subject><subject>Oncology</subject><subject>original-paper</subject><subject>Plasmids - genetics</subject><subject>Polymerase Chain Reaction</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Smad3 Protein</subject><subject>Sp1 protein</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription activation</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptional Activation</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Transforming Growth Factor beta - pharmacology</subject><subject>Transforming growth factor-b</subject><subject>Viral Core Proteins - metabolism</subject><subject>Viral diseases</subject><subject>Viral diseases of the digestive system</subject><subject>Viral hepatitis</subject><subject>Viral Nonstructural Proteins - metabolism</subject><subject>Viral Proteins - metabolism</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkV1rFDEUhgdR7Fq99VIConezm6_JJJdlsa1Q8MJ6PZwmZ9Yss5k1yVSK_6o_pL_JrDuwIIjkIuTkOe_5eKvqLaNLRoVepe1yDHbJONVUqWfVgslW1U1j5PNqQU1Da8MFP6tepbSllLaG8pfVGWuEkLSRi-rXNe4h--wTWZN7H2Eg-zhm9CERHzJGsJn89Pk7-boDJwgER5zve4wYsodheCARN9MAGcnt1WX99Lj6A9Y7dL4EHckRQrLR77MfQ5Evgv4eDo_X1YsehoRv5vu8-nb56XZ9Xd98ufq8vriprTQm123PQTmGFCRw11rBnAMtNHCGEpVyxoDRwgKXfc8ahaC5oJqDtXctpVqcVx-PumWyHxOm3O18sjgMEHCcUqeUaQWj8r8ga1tJOW0L-P4vcDtOsUyXOq4kE0LTtinU8khtYMDOh34su7DlONx5OwbsfYlfMG2oMZrzU4KNY0oR-24f_Q7iQ8dod7C7S9uu2N3NdpeEd3Mf011Z-Amf_S3AhxmAZGHoixfWpxOnSnGuD9zqyKXyFTYYTwP9o_RvTcrEnw</recordid><startdate>20041014</startdate><enddate>20041014</enddate><creator>Cheng, Pei-Lin</creator><creator>Chang, Meng-Hsiung</creator><creator>Chao, Chi-Hong</creator><creator>Lee, Yan-Hwa Wu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20041014</creationdate><title>Hepatitis C viral proteins interact with Smad3 and differentially regulate TGF-β/Smad3-mediated transcriptional activation</title><author>Cheng, Pei-Lin ; Chang, Meng-Hsiung ; Chao, Chi-Hong ; Lee, Yan-Hwa Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-7f2a6d1e0a4a2d7c31dda838a21e4e66d99a983ca24ff156ea823082accb70083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Apoptosis</topic><topic>Biological and medical sciences</topic><topic>Carcinoma, Hepatocellular</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Cell physiology</topic><topic>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</topic><topic>Cyclin-dependent kinase inhibitor p21</topic><topic>Cytokines</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>G1 phase</topic><topic>G1 Phase - drug effects</topic><topic>G1 Phase - physiology</topic><topic>Hepacivirus</topic><topic>Hepatitis C</topic><topic>Hepatitis C virus</topic><topic>Homology</topic><topic>Human Genetics</topic><topic>Human viral diseases</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Internal Medicine</topic><topic>Liver diseases</topic><topic>Liver Neoplasms</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Molecular and cellular biology</topic><topic>Nuclear transport</topic><topic>Oncology</topic><topic>original-paper</topic><topic>Plasmids - genetics</topic><topic>Polymerase Chain Reaction</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Smad3 Protein</topic><topic>Sp1 protein</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription activation</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptional Activation</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Transforming Growth Factor beta - pharmacology</topic><topic>Transforming growth factor-b</topic><topic>Viral Core Proteins - metabolism</topic><topic>Viral diseases</topic><topic>Viral diseases of the digestive system</topic><topic>Viral hepatitis</topic><topic>Viral Nonstructural Proteins - metabolism</topic><topic>Viral Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Pei-Lin</creatorcontrib><creatorcontrib>Chang, Meng-Hsiung</creatorcontrib><creatorcontrib>Chao, Chi-Hong</creatorcontrib><creatorcontrib>Lee, Yan-Hwa Wu</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Pei-Lin</au><au>Chang, Meng-Hsiung</au><au>Chao, Chi-Hong</au><au>Lee, Yan-Hwa Wu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hepatitis C viral proteins interact with Smad3 and differentially regulate TGF-β/Smad3-mediated transcriptional activation</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2004-10-14</date><risdate>2004</risdate><volume>23</volume><issue>47</issue><spage>7821</spage><epage>7838</epage><pages>7821-7838</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>Transforming growth factor- β (TGF- β ) is a pleiotropic cytokine implicated as a pathogenic mediator in various liver diseases. Enhanced TGF- β production and lack of TGF- β responses are often observed during hepatitis C virus (HCV) infection. In this study, we demonstrate that TGF- β -mediated transactivation is decreased in cells exogenously expressing the intact HCV polyprotein. Among 10 viral products of HCV, only core and nonstructural protein 3 (NS3) physically interact with the MH1 (Mad homology 1) region of the Smad3 and block TGF- β /Smad3-mediated transcriptional activation through interference with the DNA-binding ability of Smad3, not the nuclear translocation. However, the interactive domain of NS3 extends to the MH2 (Mad homology 2) region of Smad3 and a distinction is found between effects mediated, respectively, by these two viral proteins. HCV core, in the presence or absence of TGF- β , has a stronger suppressive effect on the DNA-binding and transactivation ability of Smad3 than NS3. Although HCV core, NS3, and the HCV subgenomic replicon all attenuate TGF- β /Smad3-mediated apoptosis, only HCV core represses TGF- β -induced G1 phase arrest through downregulation of the TGF- β -induced p21 promoter activation. Along with this, HCV core, rather than NS3, exhibits a significant inhibitory effect on the binding of Smad3/Sp1 complex to the proximal p21 promoter in response to TGF- β . In conclusion, HCV viral proteins interact with the TGF- β signaling mediator Smad3 and differentially impair TGF- β /Smad3-mediated transactivation and growth inhibition. This functional counteraction of TGF- β responses provides insights into possible mechanisms, whereby the HCV oncogenic proteins antagonize the host defenses during hepatocarcinogenesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15334054</pmid><doi>10.1038/sj.onc.1208066</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2004-10, Vol.23 (47), p.7821-7838
issn 0950-9232
1476-5594
language eng
recordid cdi_proquest_miscellaneous_66973104
source MEDLINE; Nature; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Apoptosis
Biological and medical sciences
Carcinoma, Hepatocellular
Cell Biology
Cell Line, Tumor
Cell physiology
Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes
Cyclin-dependent kinase inhibitor p21
Cytokines
Deoxyribonucleic acid
DNA
DNA-Binding Proteins - metabolism
Fundamental and applied biological sciences. Psychology
G1 phase
G1 Phase - drug effects
G1 Phase - physiology
Hepacivirus
Hepatitis C
Hepatitis C virus
Homology
Human Genetics
Human viral diseases
Humans
Infectious diseases
Internal Medicine
Liver diseases
Liver Neoplasms
Medical sciences
Medicine
Medicine & Public Health
Molecular and cellular biology
Nuclear transport
Oncology
original-paper
Plasmids - genetics
Polymerase Chain Reaction
Proteins
Recombinant Fusion Proteins - metabolism
Smad3 Protein
Sp1 protein
Trans-Activators - metabolism
Transcription activation
Transcription Factors - metabolism
Transcriptional Activation
Transforming Growth Factor beta - metabolism
Transforming Growth Factor beta - pharmacology
Transforming growth factor-b
Viral Core Proteins - metabolism
Viral diseases
Viral diseases of the digestive system
Viral hepatitis
Viral Nonstructural Proteins - metabolism
Viral Proteins - metabolism
title Hepatitis C viral proteins interact with Smad3 and differentially regulate TGF-β/Smad3-mediated transcriptional activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hepatitis%20C%20viral%20proteins%20interact%20with%20Smad3%20and%20differentially%20regulate%20TGF-%CE%B2/Smad3-mediated%20transcriptional%20activation&rft.jtitle=Oncogene&rft.au=Cheng,%20Pei-Lin&rft.date=2004-10-14&rft.volume=23&rft.issue=47&rft.spage=7821&rft.epage=7838&rft.pages=7821-7838&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/sj.onc.1208066&rft_dat=%3Cgale_proqu%3EA189099822%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641338075&rft_id=info:pmid/15334054&rft_galeid=A189099822&rfr_iscdi=true