Giant aeolian dune size determined by the average depth of the atmospheric boundary layer

Depending on the wind regime, sand dunes exhibit linear, crescent-shaped or star-like forms resulting from the interaction between dune morphology and sand transport. Small-scale dunes form by destabilization of the sand bed with a wavelength (a few tens of metres) determined by the sand transport s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature 2009-02, Vol.457 (7233), p.1120-1123
Hauptverfasser: Ould-Kaddour, Fouzia, Andreotti, Bruno, Claudin, Philippe, Fourrière, Antoine, Murray, Brad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1123
container_issue 7233
container_start_page 1120
container_title Nature
container_volume 457
creator Ould-Kaddour, Fouzia
Andreotti, Bruno
Claudin, Philippe
Fourrière, Antoine
Murray, Brad
description Depending on the wind regime, sand dunes exhibit linear, crescent-shaped or star-like forms resulting from the interaction between dune morphology and sand transport. Small-scale dunes form by destabilization of the sand bed with a wavelength (a few tens of metres) determined by the sand transport saturation length. The mechanisms controlling the formation of giant dunes, and in particular accounting for their typical time and length scales, have remained unknown. Using a combination of field measurements and aerodynamic calculations, we show here that the growth of aeolian giant dunes, ascribed to the nonlinear interaction between small-scale superimposed dunes, is limited by the confinement of the flow within the atmospheric boundary layer. Aeolian giant dunes and river dunes form by similar processes, with the thermal inversion layer that caps the convective boundary layer in the atmosphere acting analogously to the water surface in rivers. In both cases, the bed topography excites surface waves on the interface that in turn modify the near-bed flow velocity. This mechanism is a stabilizing process that prevents the scale of the pattern from coarsening beyond the resonant condition. Our results can explain the mean spacing of aeolian giant dunes ranging from 300 m in coastal terrestrial deserts to 3.5 km. We propose that our findings could serve as a starting point for the modelling of long-term evolution of desert landscapes under specific wind regimes.
doi_str_mv 10.1038/nature07787
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_66958727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A195136153</galeid><sourcerecordid>A195136153</sourcerecordid><originalsourceid>FETCH-LOGICAL-a732t-19e43ee3d06f84c15bc2cf7974eb2ca08fa8536ab146754628cd84b9d9b34a2b3</originalsourceid><addsrcrecordid>eNqN0t-L1DAQB_AiireePvku9UBBtGd-J31cFj0PDgU9EZ9Kmk53c7TpXtKK619vSpfbXVlR8tAw8-m3dJgkeYrROUZUvXW6HzwgKZW8l8wwkyJjQsn7yQwhojKkqDhJHoVwgxDiWLKHyQnOCSNM0lny_cJq16cauiZe0mpwkAb7C9IKevCtdVCl5SbtV5DqH-D1cuys-1Xa1VOxb7uwXoG3Ji27wVXab9JGb8A_Th7UugnwZPs8Tb6-f3e9-JBdfbq4XMyvMi0p6TOcA6MAtEKiVsxgXhpiaplLBiUxGqlaK06FLjETkjNBlKkUK_MqLynTpKSnycspd-272wFCX7Q2GGga7aAbQiFEzpUk8p-QIIbGsfwHpIoTNcKzP-BNN3gX_3YM44hynEeUTWipGyisq7vea7MEF6fZdA5qG8tznHNMBeZ0F3rgzdreFvvo_AiKp4LWmqOprw5eiKaHn_1SDyEUl18-H9rXf7fz62-Lj0e18V0IHupi7W0b16DAqBgXtNhb0KifbUc2lC1UO7vdyAhebIEORje1187YcOcIxpwwIaJ7M7kQW24Jfjf74999PvGpeJe3b34DgLcE9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204503519</pqid></control><display><type>article</type><title>Giant aeolian dune size determined by the average depth of the atmospheric boundary layer</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Ould-Kaddour, Fouzia ; Andreotti, Bruno ; Claudin, Philippe ; Fourrière, Antoine ; Murray, Brad</creator><creatorcontrib>Ould-Kaddour, Fouzia ; Andreotti, Bruno ; Claudin, Philippe ; Fourrière, Antoine ; Murray, Brad</creatorcontrib><description>Depending on the wind regime, sand dunes exhibit linear, crescent-shaped or star-like forms resulting from the interaction between dune morphology and sand transport. Small-scale dunes form by destabilization of the sand bed with a wavelength (a few tens of metres) determined by the sand transport saturation length. The mechanisms controlling the formation of giant dunes, and in particular accounting for their typical time and length scales, have remained unknown. Using a combination of field measurements and aerodynamic calculations, we show here that the growth of aeolian giant dunes, ascribed to the nonlinear interaction between small-scale superimposed dunes, is limited by the confinement of the flow within the atmospheric boundary layer. Aeolian giant dunes and river dunes form by similar processes, with the thermal inversion layer that caps the convective boundary layer in the atmosphere acting analogously to the water surface in rivers. In both cases, the bed topography excites surface waves on the interface that in turn modify the near-bed flow velocity. This mechanism is a stabilizing process that prevents the scale of the pattern from coarsening beyond the resonant condition. Our results can explain the mean spacing of aeolian giant dunes ranging from 300 m in coastal terrestrial deserts to 3.5 km. We propose that our findings could serve as a starting point for the modelling of long-term evolution of desert landscapes under specific wind regimes.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/nature07787</identifier><identifier>PMID: 19242473</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Atmosphere ; Atmospheric boundary layer ; Boundary layers ; Deserts ; Dunes ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Flow velocity ; Geomorphology, landform evolution ; Humanities and Social Sciences ; letter ; Meteorology ; multidisciplinary ; Rivers ; Sand ; Sand bars ; Sand dunes ; Science ; Science (multidisciplinary) ; Shear stress ; Surficial geology ; Velocity ; Wind</subject><ispartof>Nature, 2009-02, Vol.457 (7233), p.1120-1123</ispartof><rights>Macmillan Publishers Limited. All rights reserved 2009</rights><rights>2009 INIST-CNRS</rights><rights>COPYRIGHT 2009 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 26, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a732t-19e43ee3d06f84c15bc2cf7974eb2ca08fa8536ab146754628cd84b9d9b34a2b3</citedby><cites>FETCH-LOGICAL-a732t-19e43ee3d06f84c15bc2cf7974eb2ca08fa8536ab146754628cd84b9d9b34a2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2728,27928,27929</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21152466$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19242473$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ould-Kaddour, Fouzia</creatorcontrib><creatorcontrib>Andreotti, Bruno</creatorcontrib><creatorcontrib>Claudin, Philippe</creatorcontrib><creatorcontrib>Fourrière, Antoine</creatorcontrib><creatorcontrib>Murray, Brad</creatorcontrib><title>Giant aeolian dune size determined by the average depth of the atmospheric boundary layer</title><title>Nature</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Depending on the wind regime, sand dunes exhibit linear, crescent-shaped or star-like forms resulting from the interaction between dune morphology and sand transport. Small-scale dunes form by destabilization of the sand bed with a wavelength (a few tens of metres) determined by the sand transport saturation length. The mechanisms controlling the formation of giant dunes, and in particular accounting for their typical time and length scales, have remained unknown. Using a combination of field measurements and aerodynamic calculations, we show here that the growth of aeolian giant dunes, ascribed to the nonlinear interaction between small-scale superimposed dunes, is limited by the confinement of the flow within the atmospheric boundary layer. Aeolian giant dunes and river dunes form by similar processes, with the thermal inversion layer that caps the convective boundary layer in the atmosphere acting analogously to the water surface in rivers. In both cases, the bed topography excites surface waves on the interface that in turn modify the near-bed flow velocity. This mechanism is a stabilizing process that prevents the scale of the pattern from coarsening beyond the resonant condition. Our results can explain the mean spacing of aeolian giant dunes ranging from 300 m in coastal terrestrial deserts to 3.5 km. We propose that our findings could serve as a starting point for the modelling of long-term evolution of desert landscapes under specific wind regimes.</description><subject>Atmosphere</subject><subject>Atmospheric boundary layer</subject><subject>Boundary layers</subject><subject>Deserts</subject><subject>Dunes</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Flow velocity</subject><subject>Geomorphology, landform evolution</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Meteorology</subject><subject>multidisciplinary</subject><subject>Rivers</subject><subject>Sand</subject><subject>Sand bars</subject><subject>Sand dunes</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Shear stress</subject><subject>Surficial geology</subject><subject>Velocity</subject><subject>Wind</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0t-L1DAQB_AiireePvku9UBBtGd-J31cFj0PDgU9EZ9Kmk53c7TpXtKK619vSpfbXVlR8tAw8-m3dJgkeYrROUZUvXW6HzwgKZW8l8wwkyJjQsn7yQwhojKkqDhJHoVwgxDiWLKHyQnOCSNM0lny_cJq16cauiZe0mpwkAb7C9IKevCtdVCl5SbtV5DqH-D1cuys-1Xa1VOxb7uwXoG3Ji27wVXab9JGb8A_Th7UugnwZPs8Tb6-f3e9-JBdfbq4XMyvMi0p6TOcA6MAtEKiVsxgXhpiaplLBiUxGqlaK06FLjETkjNBlKkUK_MqLynTpKSnycspd-272wFCX7Q2GGga7aAbQiFEzpUk8p-QIIbGsfwHpIoTNcKzP-BNN3gX_3YM44hynEeUTWipGyisq7vea7MEF6fZdA5qG8tznHNMBeZ0F3rgzdreFvvo_AiKp4LWmqOprw5eiKaHn_1SDyEUl18-H9rXf7fz62-Lj0e18V0IHupi7W0b16DAqBgXtNhb0KifbUc2lC1UO7vdyAhebIEORje1187YcOcIxpwwIaJ7M7kQW24Jfjf74999PvGpeJe3b34DgLcE9Q</recordid><startdate>20090226</startdate><enddate>20090226</enddate><creator>Ould-Kaddour, Fouzia</creator><creator>Andreotti, Bruno</creator><creator>Claudin, Philippe</creator><creator>Fourrière, Antoine</creator><creator>Murray, Brad</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>20090226</creationdate><title>Giant aeolian dune size determined by the average depth of the atmospheric boundary layer</title><author>Ould-Kaddour, Fouzia ; Andreotti, Bruno ; Claudin, Philippe ; Fourrière, Antoine ; Murray, Brad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a732t-19e43ee3d06f84c15bc2cf7974eb2ca08fa8536ab146754628cd84b9d9b34a2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Atmosphere</topic><topic>Atmospheric boundary layer</topic><topic>Boundary layers</topic><topic>Deserts</topic><topic>Dunes</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Flow velocity</topic><topic>Geomorphology, landform evolution</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Meteorology</topic><topic>multidisciplinary</topic><topic>Rivers</topic><topic>Sand</topic><topic>Sand bars</topic><topic>Sand dunes</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Shear stress</topic><topic>Surficial geology</topic><topic>Velocity</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ould-Kaddour, Fouzia</creatorcontrib><creatorcontrib>Andreotti, Bruno</creatorcontrib><creatorcontrib>Claudin, Philippe</creatorcontrib><creatorcontrib>Fourrière, Antoine</creatorcontrib><creatorcontrib>Murray, Brad</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ould-Kaddour, Fouzia</au><au>Andreotti, Bruno</au><au>Claudin, Philippe</au><au>Fourrière, Antoine</au><au>Murray, Brad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant aeolian dune size determined by the average depth of the atmospheric boundary layer</atitle><jtitle>Nature</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2009-02-26</date><risdate>2009</risdate><volume>457</volume><issue>7233</issue><spage>1120</spage><epage>1123</epage><pages>1120-1123</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><eissn>1476-4679</eissn><coden>NATUAS</coden><abstract>Depending on the wind regime, sand dunes exhibit linear, crescent-shaped or star-like forms resulting from the interaction between dune morphology and sand transport. Small-scale dunes form by destabilization of the sand bed with a wavelength (a few tens of metres) determined by the sand transport saturation length. The mechanisms controlling the formation of giant dunes, and in particular accounting for their typical time and length scales, have remained unknown. Using a combination of field measurements and aerodynamic calculations, we show here that the growth of aeolian giant dunes, ascribed to the nonlinear interaction between small-scale superimposed dunes, is limited by the confinement of the flow within the atmospheric boundary layer. Aeolian giant dunes and river dunes form by similar processes, with the thermal inversion layer that caps the convective boundary layer in the atmosphere acting analogously to the water surface in rivers. In both cases, the bed topography excites surface waves on the interface that in turn modify the near-bed flow velocity. This mechanism is a stabilizing process that prevents the scale of the pattern from coarsening beyond the resonant condition. Our results can explain the mean spacing of aeolian giant dunes ranging from 300 m in coastal terrestrial deserts to 3.5 km. We propose that our findings could serve as a starting point for the modelling of long-term evolution of desert landscapes under specific wind regimes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>19242473</pmid><doi>10.1038/nature07787</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature, 2009-02, Vol.457 (7233), p.1120-1123
issn 0028-0836
1476-4687
1476-4679
language eng
recordid cdi_proquest_miscellaneous_66958727
source Nature; Alma/SFX Local Collection
subjects Atmosphere
Atmospheric boundary layer
Boundary layers
Deserts
Dunes
Earth sciences
Earth, ocean, space
Exact sciences and technology
Flow velocity
Geomorphology, landform evolution
Humanities and Social Sciences
letter
Meteorology
multidisciplinary
Rivers
Sand
Sand bars
Sand dunes
Science
Science (multidisciplinary)
Shear stress
Surficial geology
Velocity
Wind
title Giant aeolian dune size determined by the average depth of the atmospheric boundary layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A05%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20aeolian%20dune%20size%20determined%20by%20the%20average%20depth%20of%20the%20atmospheric%20boundary%20layer&rft.jtitle=Nature&rft.au=Ould-Kaddour,%20Fouzia&rft.date=2009-02-26&rft.volume=457&rft.issue=7233&rft.spage=1120&rft.epage=1123&rft.pages=1120-1123&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature07787&rft_dat=%3Cgale_proqu%3EA195136153%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204503519&rft_id=info:pmid/19242473&rft_galeid=A195136153&rfr_iscdi=true