Real-time PCR microfluidic devices with concurrent electrochemical detection
Electrochemistry-based detection methods hold great potential towards development of hand-held nucleic-acid analyses instruments. In this work, we demonstrate the implementation of in situ electrochemical (EC) detection method in a microfluidic flow-through EC-qPCR (FTEC-qPCR) device, where both the...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2009-03, Vol.24 (7), p.2131-2136 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2136 |
---|---|
container_issue | 7 |
container_start_page | 2131 |
container_title | Biosensors & bioelectronics |
container_volume | 24 |
creator | Fang, Teh Huey Ramalingam, Naveen Xian-Dui, Dong Ngin, Tan Swee Xianting, Zeng Lai Kuan, Annie Tan Peng Huat, Eric Yap Hai-Qing, Gong |
description | Electrochemistry-based detection methods hold great potential towards development of hand-held nucleic-acid analyses instruments. In this work, we demonstrate the implementation of in situ electrochemical (EC) detection method in a microfluidic flow-through EC-qPCR (FTEC-qPCR) device, where both the amplification of the target nucleic-acid sequence and subsequent EC detection of the PCR amplicon are realized simultaneously at selected PCR cycles in the same device. The FTEC-qPCR device utilizes methylene blue (MB), an electroactive DNA intercalator, for electrochemical signal measurements in the presence of PCR reagent components. Our EC detection method is advantageous, when compared to other existing EC methods for PCR amplicon analysis, since FTEC-qPCR does not require probe-modified electrodes, or asymmetric PCR, or solid-phase PCR. Key technical issues related to surface passivation, electrochemical measurement, PCR inhibition by metal electrode, bubble-free PCR, were investigated. By controlling the concentration of MB and the exposure of PCR mixture to the bare metal electrode, we successfully demonstrated electrochemical measurement of MB in solution-phase, symmetric PCR by amplifying a fragment of lambda phage DNA. The threshold cycle (Ct) values for both the electrochemical and fluorescence-based assays decreased linearly with the increase of the input target quantity. The sensitivity of EC-based detection of PCR products is comparable to the sensitivity of an optical fluorescence detection system. |
doi_str_mv | 10.1016/j.bios.2008.11.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66957914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095656630800612X</els_id><sourcerecordid>66957914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-83f58dc624a00edbaa65f06de6c5710beb6822b04ab295c9c58c8d7cfbe61c603</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVJaLZp_0APxZfkZmckW7IFvZQlaQoLDUt6FvJozGrxRyrZCfn30bJLe8tpYHhmeN-Hsa8cCg5c3eyL1k-xEABNwXkBoD-wFW_qMq9EKc_YCrRUuVSqvGCfYtwDQM01fGQXXHMlKgUrttmS7fPZD5Q9rLfZ4DFMXb945zFz9OyRYvbi512G04hLCDTOGfWEc5hwRwm3feLmtPDT-Jmdd7aP9OU0L9mfu9vH9X2--f3z1_rHJseyqea8KTvZOEwJLAC51lolO1COFMqaQ0utaoRoobKt0BI1ygYbV2PXkuKooLxk18e_T2H6u1CczeAjUt_bkaYlGqW0rDWvEiiOYGoVY6DOPAU_2PBqOJiDQ7M3B4fm4NBwbpLDdPTt9H1pB3L_T07SEnB1AmxM_btgR_TxHye4ULoGmbjvR46Si2dPwUT0NCI5H5Iw4yb_Xo435QyQsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66957914</pqid></control><display><type>article</type><title>Real-time PCR microfluidic devices with concurrent electrochemical detection</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Fang, Teh Huey ; Ramalingam, Naveen ; Xian-Dui, Dong ; Ngin, Tan Swee ; Xianting, Zeng ; Lai Kuan, Annie Tan ; Peng Huat, Eric Yap ; Hai-Qing, Gong</creator><creatorcontrib>Fang, Teh Huey ; Ramalingam, Naveen ; Xian-Dui, Dong ; Ngin, Tan Swee ; Xianting, Zeng ; Lai Kuan, Annie Tan ; Peng Huat, Eric Yap ; Hai-Qing, Gong</creatorcontrib><description>Electrochemistry-based detection methods hold great potential towards development of hand-held nucleic-acid analyses instruments. In this work, we demonstrate the implementation of in situ electrochemical (EC) detection method in a microfluidic flow-through EC-qPCR (FTEC-qPCR) device, where both the amplification of the target nucleic-acid sequence and subsequent EC detection of the PCR amplicon are realized simultaneously at selected PCR cycles in the same device. The FTEC-qPCR device utilizes methylene blue (MB), an electroactive DNA intercalator, for electrochemical signal measurements in the presence of PCR reagent components. Our EC detection method is advantageous, when compared to other existing EC methods for PCR amplicon analysis, since FTEC-qPCR does not require probe-modified electrodes, or asymmetric PCR, or solid-phase PCR. Key technical issues related to surface passivation, electrochemical measurement, PCR inhibition by metal electrode, bubble-free PCR, were investigated. By controlling the concentration of MB and the exposure of PCR mixture to the bare metal electrode, we successfully demonstrated electrochemical measurement of MB in solution-phase, symmetric PCR by amplifying a fragment of lambda phage DNA. The threshold cycle (Ct) values for both the electrochemical and fluorescence-based assays decreased linearly with the increase of the input target quantity. The sensitivity of EC-based detection of PCR products is comparable to the sensitivity of an optical fluorescence detection system.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2008.11.009</identifier><identifier>PMID: 19162460</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Biological and medical sciences ; Biosensing Techniques - instrumentation ; Biotechnology ; Computer Systems ; DNA - analysis ; DNA - chemistry ; DNA - genetics ; Electrochemical qPCR ; Electrochemistry - instrumentation ; Equipment Design ; Equipment Failure Analysis ; Flow-through PCR ; Fundamental and applied biological sciences. Psychology ; Methylene blue ; Microchip qPCR ; Miniaturization ; Oligonucleotide Array Sequence Analysis - instrumentation ; Polymerase Chain Reaction - instrumentation ; Reproducibility of Results ; Sensitivity and Specificity</subject><ispartof>Biosensors & bioelectronics, 2009-03, Vol.24 (7), p.2131-2136</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-83f58dc624a00edbaa65f06de6c5710beb6822b04ab295c9c58c8d7cfbe61c603</citedby><cites>FETCH-LOGICAL-c384t-83f58dc624a00edbaa65f06de6c5710beb6822b04ab295c9c58c8d7cfbe61c603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S095656630800612X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21269705$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19162460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Teh Huey</creatorcontrib><creatorcontrib>Ramalingam, Naveen</creatorcontrib><creatorcontrib>Xian-Dui, Dong</creatorcontrib><creatorcontrib>Ngin, Tan Swee</creatorcontrib><creatorcontrib>Xianting, Zeng</creatorcontrib><creatorcontrib>Lai Kuan, Annie Tan</creatorcontrib><creatorcontrib>Peng Huat, Eric Yap</creatorcontrib><creatorcontrib>Hai-Qing, Gong</creatorcontrib><title>Real-time PCR microfluidic devices with concurrent electrochemical detection</title><title>Biosensors & bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Electrochemistry-based detection methods hold great potential towards development of hand-held nucleic-acid analyses instruments. In this work, we demonstrate the implementation of in situ electrochemical (EC) detection method in a microfluidic flow-through EC-qPCR (FTEC-qPCR) device, where both the amplification of the target nucleic-acid sequence and subsequent EC detection of the PCR amplicon are realized simultaneously at selected PCR cycles in the same device. The FTEC-qPCR device utilizes methylene blue (MB), an electroactive DNA intercalator, for electrochemical signal measurements in the presence of PCR reagent components. Our EC detection method is advantageous, when compared to other existing EC methods for PCR amplicon analysis, since FTEC-qPCR does not require probe-modified electrodes, or asymmetric PCR, or solid-phase PCR. Key technical issues related to surface passivation, electrochemical measurement, PCR inhibition by metal electrode, bubble-free PCR, were investigated. By controlling the concentration of MB and the exposure of PCR mixture to the bare metal electrode, we successfully demonstrated electrochemical measurement of MB in solution-phase, symmetric PCR by amplifying a fragment of lambda phage DNA. The threshold cycle (Ct) values for both the electrochemical and fluorescence-based assays decreased linearly with the increase of the input target quantity. The sensitivity of EC-based detection of PCR products is comparable to the sensitivity of an optical fluorescence detection system.</description><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biotechnology</subject><subject>Computer Systems</subject><subject>DNA - analysis</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>Electrochemical qPCR</subject><subject>Electrochemistry - instrumentation</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Flow-through PCR</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Methylene blue</subject><subject>Microchip qPCR</subject><subject>Miniaturization</subject><subject>Oligonucleotide Array Sequence Analysis - instrumentation</subject><subject>Polymerase Chain Reaction - instrumentation</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1r3DAQhkVJaLZp_0APxZfkZmckW7IFvZQlaQoLDUt6FvJozGrxRyrZCfn30bJLe8tpYHhmeN-Hsa8cCg5c3eyL1k-xEABNwXkBoD-wFW_qMq9EKc_YCrRUuVSqvGCfYtwDQM01fGQXXHMlKgUrttmS7fPZD5Q9rLfZ4DFMXb945zFz9OyRYvbi512G04hLCDTOGfWEc5hwRwm3feLmtPDT-Jmdd7aP9OU0L9mfu9vH9X2--f3z1_rHJseyqea8KTvZOEwJLAC51lolO1COFMqaQ0utaoRoobKt0BI1ygYbV2PXkuKooLxk18e_T2H6u1CczeAjUt_bkaYlGqW0rDWvEiiOYGoVY6DOPAU_2PBqOJiDQ7M3B4fm4NBwbpLDdPTt9H1pB3L_T07SEnB1AmxM_btgR_TxHye4ULoGmbjvR46Si2dPwUT0NCI5H5Iw4yb_Xo435QyQsQ</recordid><startdate>20090315</startdate><enddate>20090315</enddate><creator>Fang, Teh Huey</creator><creator>Ramalingam, Naveen</creator><creator>Xian-Dui, Dong</creator><creator>Ngin, Tan Swee</creator><creator>Xianting, Zeng</creator><creator>Lai Kuan, Annie Tan</creator><creator>Peng Huat, Eric Yap</creator><creator>Hai-Qing, Gong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090315</creationdate><title>Real-time PCR microfluidic devices with concurrent electrochemical detection</title><author>Fang, Teh Huey ; Ramalingam, Naveen ; Xian-Dui, Dong ; Ngin, Tan Swee ; Xianting, Zeng ; Lai Kuan, Annie Tan ; Peng Huat, Eric Yap ; Hai-Qing, Gong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-83f58dc624a00edbaa65f06de6c5710beb6822b04ab295c9c58c8d7cfbe61c603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biotechnology</topic><topic>Computer Systems</topic><topic>DNA - analysis</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>Electrochemical qPCR</topic><topic>Electrochemistry - instrumentation</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Flow-through PCR</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Methylene blue</topic><topic>Microchip qPCR</topic><topic>Miniaturization</topic><topic>Oligonucleotide Array Sequence Analysis - instrumentation</topic><topic>Polymerase Chain Reaction - instrumentation</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Teh Huey</creatorcontrib><creatorcontrib>Ramalingam, Naveen</creatorcontrib><creatorcontrib>Xian-Dui, Dong</creatorcontrib><creatorcontrib>Ngin, Tan Swee</creatorcontrib><creatorcontrib>Xianting, Zeng</creatorcontrib><creatorcontrib>Lai Kuan, Annie Tan</creatorcontrib><creatorcontrib>Peng Huat, Eric Yap</creatorcontrib><creatorcontrib>Hai-Qing, Gong</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biosensors & bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Teh Huey</au><au>Ramalingam, Naveen</au><au>Xian-Dui, Dong</au><au>Ngin, Tan Swee</au><au>Xianting, Zeng</au><au>Lai Kuan, Annie Tan</au><au>Peng Huat, Eric Yap</au><au>Hai-Qing, Gong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time PCR microfluidic devices with concurrent electrochemical detection</atitle><jtitle>Biosensors & bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2009-03-15</date><risdate>2009</risdate><volume>24</volume><issue>7</issue><spage>2131</spage><epage>2136</epage><pages>2131-2136</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Electrochemistry-based detection methods hold great potential towards development of hand-held nucleic-acid analyses instruments. In this work, we demonstrate the implementation of in situ electrochemical (EC) detection method in a microfluidic flow-through EC-qPCR (FTEC-qPCR) device, where both the amplification of the target nucleic-acid sequence and subsequent EC detection of the PCR amplicon are realized simultaneously at selected PCR cycles in the same device. The FTEC-qPCR device utilizes methylene blue (MB), an electroactive DNA intercalator, for electrochemical signal measurements in the presence of PCR reagent components. Our EC detection method is advantageous, when compared to other existing EC methods for PCR amplicon analysis, since FTEC-qPCR does not require probe-modified electrodes, or asymmetric PCR, or solid-phase PCR. Key technical issues related to surface passivation, electrochemical measurement, PCR inhibition by metal electrode, bubble-free PCR, were investigated. By controlling the concentration of MB and the exposure of PCR mixture to the bare metal electrode, we successfully demonstrated electrochemical measurement of MB in solution-phase, symmetric PCR by amplifying a fragment of lambda phage DNA. The threshold cycle (Ct) values for both the electrochemical and fluorescence-based assays decreased linearly with the increase of the input target quantity. The sensitivity of EC-based detection of PCR products is comparable to the sensitivity of an optical fluorescence detection system.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>19162460</pmid><doi>10.1016/j.bios.2008.11.009</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5663 |
ispartof | Biosensors & bioelectronics, 2009-03, Vol.24 (7), p.2131-2136 |
issn | 0956-5663 1873-4235 |
language | eng |
recordid | cdi_proquest_miscellaneous_66957914 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Biological and medical sciences Biosensing Techniques - instrumentation Biotechnology Computer Systems DNA - analysis DNA - chemistry DNA - genetics Electrochemical qPCR Electrochemistry - instrumentation Equipment Design Equipment Failure Analysis Flow-through PCR Fundamental and applied biological sciences. Psychology Methylene blue Microchip qPCR Miniaturization Oligonucleotide Array Sequence Analysis - instrumentation Polymerase Chain Reaction - instrumentation Reproducibility of Results Sensitivity and Specificity |
title | Real-time PCR microfluidic devices with concurrent electrochemical detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A56%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20PCR%20microfluidic%20devices%20with%20concurrent%20electrochemical%20detection&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Fang,%20Teh%20Huey&rft.date=2009-03-15&rft.volume=24&rft.issue=7&rft.spage=2131&rft.epage=2136&rft.pages=2131-2136&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2008.11.009&rft_dat=%3Cproquest_cross%3E66957914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66957914&rft_id=info:pmid/19162460&rft_els_id=S095656630800612X&rfr_iscdi=true |