Real-time PCR microfluidic devices with concurrent electrochemical detection

Electrochemistry-based detection methods hold great potential towards development of hand-held nucleic-acid analyses instruments. In this work, we demonstrate the implementation of in situ electrochemical (EC) detection method in a microfluidic flow-through EC-qPCR (FTEC-qPCR) device, where both the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2009-03, Vol.24 (7), p.2131-2136
Hauptverfasser: Fang, Teh Huey, Ramalingam, Naveen, Xian-Dui, Dong, Ngin, Tan Swee, Xianting, Zeng, Lai Kuan, Annie Tan, Peng Huat, Eric Yap, Hai-Qing, Gong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2136
container_issue 7
container_start_page 2131
container_title Biosensors & bioelectronics
container_volume 24
creator Fang, Teh Huey
Ramalingam, Naveen
Xian-Dui, Dong
Ngin, Tan Swee
Xianting, Zeng
Lai Kuan, Annie Tan
Peng Huat, Eric Yap
Hai-Qing, Gong
description Electrochemistry-based detection methods hold great potential towards development of hand-held nucleic-acid analyses instruments. In this work, we demonstrate the implementation of in situ electrochemical (EC) detection method in a microfluidic flow-through EC-qPCR (FTEC-qPCR) device, where both the amplification of the target nucleic-acid sequence and subsequent EC detection of the PCR amplicon are realized simultaneously at selected PCR cycles in the same device. The FTEC-qPCR device utilizes methylene blue (MB), an electroactive DNA intercalator, for electrochemical signal measurements in the presence of PCR reagent components. Our EC detection method is advantageous, when compared to other existing EC methods for PCR amplicon analysis, since FTEC-qPCR does not require probe-modified electrodes, or asymmetric PCR, or solid-phase PCR. Key technical issues related to surface passivation, electrochemical measurement, PCR inhibition by metal electrode, bubble-free PCR, were investigated. By controlling the concentration of MB and the exposure of PCR mixture to the bare metal electrode, we successfully demonstrated electrochemical measurement of MB in solution-phase, symmetric PCR by amplifying a fragment of lambda phage DNA. The threshold cycle (Ct) values for both the electrochemical and fluorescence-based assays decreased linearly with the increase of the input target quantity. The sensitivity of EC-based detection of PCR products is comparable to the sensitivity of an optical fluorescence detection system.
doi_str_mv 10.1016/j.bios.2008.11.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66957914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095656630800612X</els_id><sourcerecordid>66957914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-83f58dc624a00edbaa65f06de6c5710beb6822b04ab295c9c58c8d7cfbe61c603</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVJaLZp_0APxZfkZmckW7IFvZQlaQoLDUt6FvJozGrxRyrZCfn30bJLe8tpYHhmeN-Hsa8cCg5c3eyL1k-xEABNwXkBoD-wFW_qMq9EKc_YCrRUuVSqvGCfYtwDQM01fGQXXHMlKgUrttmS7fPZD5Q9rLfZ4DFMXb945zFz9OyRYvbi512G04hLCDTOGfWEc5hwRwm3feLmtPDT-Jmdd7aP9OU0L9mfu9vH9X2--f3z1_rHJseyqea8KTvZOEwJLAC51lolO1COFMqaQ0utaoRoobKt0BI1ygYbV2PXkuKooLxk18e_T2H6u1CczeAjUt_bkaYlGqW0rDWvEiiOYGoVY6DOPAU_2PBqOJiDQ7M3B4fm4NBwbpLDdPTt9H1pB3L_T07SEnB1AmxM_btgR_TxHye4ULoGmbjvR46Si2dPwUT0NCI5H5Iw4yb_Xo435QyQsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66957914</pqid></control><display><type>article</type><title>Real-time PCR microfluidic devices with concurrent electrochemical detection</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Fang, Teh Huey ; Ramalingam, Naveen ; Xian-Dui, Dong ; Ngin, Tan Swee ; Xianting, Zeng ; Lai Kuan, Annie Tan ; Peng Huat, Eric Yap ; Hai-Qing, Gong</creator><creatorcontrib>Fang, Teh Huey ; Ramalingam, Naveen ; Xian-Dui, Dong ; Ngin, Tan Swee ; Xianting, Zeng ; Lai Kuan, Annie Tan ; Peng Huat, Eric Yap ; Hai-Qing, Gong</creatorcontrib><description>Electrochemistry-based detection methods hold great potential towards development of hand-held nucleic-acid analyses instruments. In this work, we demonstrate the implementation of in situ electrochemical (EC) detection method in a microfluidic flow-through EC-qPCR (FTEC-qPCR) device, where both the amplification of the target nucleic-acid sequence and subsequent EC detection of the PCR amplicon are realized simultaneously at selected PCR cycles in the same device. The FTEC-qPCR device utilizes methylene blue (MB), an electroactive DNA intercalator, for electrochemical signal measurements in the presence of PCR reagent components. Our EC detection method is advantageous, when compared to other existing EC methods for PCR amplicon analysis, since FTEC-qPCR does not require probe-modified electrodes, or asymmetric PCR, or solid-phase PCR. Key technical issues related to surface passivation, electrochemical measurement, PCR inhibition by metal electrode, bubble-free PCR, were investigated. By controlling the concentration of MB and the exposure of PCR mixture to the bare metal electrode, we successfully demonstrated electrochemical measurement of MB in solution-phase, symmetric PCR by amplifying a fragment of lambda phage DNA. The threshold cycle (Ct) values for both the electrochemical and fluorescence-based assays decreased linearly with the increase of the input target quantity. The sensitivity of EC-based detection of PCR products is comparable to the sensitivity of an optical fluorescence detection system.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2008.11.009</identifier><identifier>PMID: 19162460</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Biological and medical sciences ; Biosensing Techniques - instrumentation ; Biotechnology ; Computer Systems ; DNA - analysis ; DNA - chemistry ; DNA - genetics ; Electrochemical qPCR ; Electrochemistry - instrumentation ; Equipment Design ; Equipment Failure Analysis ; Flow-through PCR ; Fundamental and applied biological sciences. Psychology ; Methylene blue ; Microchip qPCR ; Miniaturization ; Oligonucleotide Array Sequence Analysis - instrumentation ; Polymerase Chain Reaction - instrumentation ; Reproducibility of Results ; Sensitivity and Specificity</subject><ispartof>Biosensors &amp; bioelectronics, 2009-03, Vol.24 (7), p.2131-2136</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-83f58dc624a00edbaa65f06de6c5710beb6822b04ab295c9c58c8d7cfbe61c603</citedby><cites>FETCH-LOGICAL-c384t-83f58dc624a00edbaa65f06de6c5710beb6822b04ab295c9c58c8d7cfbe61c603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S095656630800612X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21269705$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19162460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Teh Huey</creatorcontrib><creatorcontrib>Ramalingam, Naveen</creatorcontrib><creatorcontrib>Xian-Dui, Dong</creatorcontrib><creatorcontrib>Ngin, Tan Swee</creatorcontrib><creatorcontrib>Xianting, Zeng</creatorcontrib><creatorcontrib>Lai Kuan, Annie Tan</creatorcontrib><creatorcontrib>Peng Huat, Eric Yap</creatorcontrib><creatorcontrib>Hai-Qing, Gong</creatorcontrib><title>Real-time PCR microfluidic devices with concurrent electrochemical detection</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Electrochemistry-based detection methods hold great potential towards development of hand-held nucleic-acid analyses instruments. In this work, we demonstrate the implementation of in situ electrochemical (EC) detection method in a microfluidic flow-through EC-qPCR (FTEC-qPCR) device, where both the amplification of the target nucleic-acid sequence and subsequent EC detection of the PCR amplicon are realized simultaneously at selected PCR cycles in the same device. The FTEC-qPCR device utilizes methylene blue (MB), an electroactive DNA intercalator, for electrochemical signal measurements in the presence of PCR reagent components. Our EC detection method is advantageous, when compared to other existing EC methods for PCR amplicon analysis, since FTEC-qPCR does not require probe-modified electrodes, or asymmetric PCR, or solid-phase PCR. Key technical issues related to surface passivation, electrochemical measurement, PCR inhibition by metal electrode, bubble-free PCR, were investigated. By controlling the concentration of MB and the exposure of PCR mixture to the bare metal electrode, we successfully demonstrated electrochemical measurement of MB in solution-phase, symmetric PCR by amplifying a fragment of lambda phage DNA. The threshold cycle (Ct) values for both the electrochemical and fluorescence-based assays decreased linearly with the increase of the input target quantity. The sensitivity of EC-based detection of PCR products is comparable to the sensitivity of an optical fluorescence detection system.</description><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biotechnology</subject><subject>Computer Systems</subject><subject>DNA - analysis</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>Electrochemical qPCR</subject><subject>Electrochemistry - instrumentation</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Flow-through PCR</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Methylene blue</subject><subject>Microchip qPCR</subject><subject>Miniaturization</subject><subject>Oligonucleotide Array Sequence Analysis - instrumentation</subject><subject>Polymerase Chain Reaction - instrumentation</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1r3DAQhkVJaLZp_0APxZfkZmckW7IFvZQlaQoLDUt6FvJozGrxRyrZCfn30bJLe8tpYHhmeN-Hsa8cCg5c3eyL1k-xEABNwXkBoD-wFW_qMq9EKc_YCrRUuVSqvGCfYtwDQM01fGQXXHMlKgUrttmS7fPZD5Q9rLfZ4DFMXb945zFz9OyRYvbi512G04hLCDTOGfWEc5hwRwm3feLmtPDT-Jmdd7aP9OU0L9mfu9vH9X2--f3z1_rHJseyqea8KTvZOEwJLAC51lolO1COFMqaQ0utaoRoobKt0BI1ygYbV2PXkuKooLxk18e_T2H6u1CczeAjUt_bkaYlGqW0rDWvEiiOYGoVY6DOPAU_2PBqOJiDQ7M3B4fm4NBwbpLDdPTt9H1pB3L_T07SEnB1AmxM_btgR_TxHye4ULoGmbjvR46Si2dPwUT0NCI5H5Iw4yb_Xo435QyQsQ</recordid><startdate>20090315</startdate><enddate>20090315</enddate><creator>Fang, Teh Huey</creator><creator>Ramalingam, Naveen</creator><creator>Xian-Dui, Dong</creator><creator>Ngin, Tan Swee</creator><creator>Xianting, Zeng</creator><creator>Lai Kuan, Annie Tan</creator><creator>Peng Huat, Eric Yap</creator><creator>Hai-Qing, Gong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090315</creationdate><title>Real-time PCR microfluidic devices with concurrent electrochemical detection</title><author>Fang, Teh Huey ; Ramalingam, Naveen ; Xian-Dui, Dong ; Ngin, Tan Swee ; Xianting, Zeng ; Lai Kuan, Annie Tan ; Peng Huat, Eric Yap ; Hai-Qing, Gong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-83f58dc624a00edbaa65f06de6c5710beb6822b04ab295c9c58c8d7cfbe61c603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biotechnology</topic><topic>Computer Systems</topic><topic>DNA - analysis</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>Electrochemical qPCR</topic><topic>Electrochemistry - instrumentation</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Flow-through PCR</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Methylene blue</topic><topic>Microchip qPCR</topic><topic>Miniaturization</topic><topic>Oligonucleotide Array Sequence Analysis - instrumentation</topic><topic>Polymerase Chain Reaction - instrumentation</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Teh Huey</creatorcontrib><creatorcontrib>Ramalingam, Naveen</creatorcontrib><creatorcontrib>Xian-Dui, Dong</creatorcontrib><creatorcontrib>Ngin, Tan Swee</creatorcontrib><creatorcontrib>Xianting, Zeng</creatorcontrib><creatorcontrib>Lai Kuan, Annie Tan</creatorcontrib><creatorcontrib>Peng Huat, Eric Yap</creatorcontrib><creatorcontrib>Hai-Qing, Gong</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Teh Huey</au><au>Ramalingam, Naveen</au><au>Xian-Dui, Dong</au><au>Ngin, Tan Swee</au><au>Xianting, Zeng</au><au>Lai Kuan, Annie Tan</au><au>Peng Huat, Eric Yap</au><au>Hai-Qing, Gong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time PCR microfluidic devices with concurrent electrochemical detection</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2009-03-15</date><risdate>2009</risdate><volume>24</volume><issue>7</issue><spage>2131</spage><epage>2136</epage><pages>2131-2136</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Electrochemistry-based detection methods hold great potential towards development of hand-held nucleic-acid analyses instruments. In this work, we demonstrate the implementation of in situ electrochemical (EC) detection method in a microfluidic flow-through EC-qPCR (FTEC-qPCR) device, where both the amplification of the target nucleic-acid sequence and subsequent EC detection of the PCR amplicon are realized simultaneously at selected PCR cycles in the same device. The FTEC-qPCR device utilizes methylene blue (MB), an electroactive DNA intercalator, for electrochemical signal measurements in the presence of PCR reagent components. Our EC detection method is advantageous, when compared to other existing EC methods for PCR amplicon analysis, since FTEC-qPCR does not require probe-modified electrodes, or asymmetric PCR, or solid-phase PCR. Key technical issues related to surface passivation, electrochemical measurement, PCR inhibition by metal electrode, bubble-free PCR, were investigated. By controlling the concentration of MB and the exposure of PCR mixture to the bare metal electrode, we successfully demonstrated electrochemical measurement of MB in solution-phase, symmetric PCR by amplifying a fragment of lambda phage DNA. The threshold cycle (Ct) values for both the electrochemical and fluorescence-based assays decreased linearly with the increase of the input target quantity. The sensitivity of EC-based detection of PCR products is comparable to the sensitivity of an optical fluorescence detection system.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>19162460</pmid><doi>10.1016/j.bios.2008.11.009</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2009-03, Vol.24 (7), p.2131-2136
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_66957914
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biological and medical sciences
Biosensing Techniques - instrumentation
Biotechnology
Computer Systems
DNA - analysis
DNA - chemistry
DNA - genetics
Electrochemical qPCR
Electrochemistry - instrumentation
Equipment Design
Equipment Failure Analysis
Flow-through PCR
Fundamental and applied biological sciences. Psychology
Methylene blue
Microchip qPCR
Miniaturization
Oligonucleotide Array Sequence Analysis - instrumentation
Polymerase Chain Reaction - instrumentation
Reproducibility of Results
Sensitivity and Specificity
title Real-time PCR microfluidic devices with concurrent electrochemical detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A56%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20PCR%20microfluidic%20devices%20with%20concurrent%20electrochemical%20detection&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Fang,%20Teh%20Huey&rft.date=2009-03-15&rft.volume=24&rft.issue=7&rft.spage=2131&rft.epage=2136&rft.pages=2131-2136&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2008.11.009&rft_dat=%3Cproquest_cross%3E66957914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66957914&rft_id=info:pmid/19162460&rft_els_id=S095656630800612X&rfr_iscdi=true