A thin-walled carotid vessel phantom for Doppler ultrasound flow studies

A technique is discussed for producing a robust ultrasound (US)-compatible flow phantom that consists of a thin-walled silicone-elastomer vessel with a lumen of arbitrary geometry, embedded in an agar-based tissue-mimicking material (TMM). The TMM has an acoustic attenuation of 0.56 dB cm −1 MHz −1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasound in medicine & biology 2004-08, Vol.30 (8), p.1067-1078
Hauptverfasser: Poepping, Tamie L., Nikolov, Hristo N., Thorne, Meghan L., Holdsworth, David W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1078
container_issue 8
container_start_page 1067
container_title Ultrasound in medicine & biology
container_volume 30
creator Poepping, Tamie L.
Nikolov, Hristo N.
Thorne, Meghan L.
Holdsworth, David W.
description A technique is discussed for producing a robust ultrasound (US)-compatible flow phantom that consists of a thin-walled silicone-elastomer vessel with a lumen of arbitrary geometry, embedded in an agar-based tissue-mimicking material (TMM). The TMM has an acoustic attenuation of 0.56 dB cm −1 MHz −1 at 5 MHz, with nearly linear frequency-dependence and acoustic velocity of 1539 ± 4 m s −1. The vessel-mimicking material (VMM) has an acoustic attenuation of 3.5 dB cm −1 MHz −1 with linear frequency-dependence and an acoustic velocity of 1020 ± 20 m s −1. Scattering particles, which are added to the VMM to increase echogenicity and add speckle texture, lead to higher attenuation, depending on particle concentration and frequency. The VMM is stable over time, with a Young’s elastic modulus of 1.3 to 1.7 MPa for strains of up to 10%, which mimics human arteries under typical physiological conditions. The phantom is sealed to prevent TMM exposure to air or water, to avoid changes to the acoustic velocity.
doi_str_mv 10.1016/j.ultrasmedbio.2004.06.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66957335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301562904001541</els_id><sourcerecordid>66957335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-53f8acaf84ed3b9612ba98ca46c12259c5d237a65938eacab18d3bb58329ff923</originalsourceid><addsrcrecordid>eNqNkU1rFTEUhoNU7G31L0hwUdzMmI9JJnFXWmuFghsL3YVMcobmkjsZk5kW_72p94JdVVdncZ73vHAehD5Q0lJC5adtu8Yl27IDP4TUMkK6lsiWEP4KbajqdcM0vTtCG8IJbYRk-hidlLIlhPSS92_QMRVd3_WCbtD1OV7uw9Q82hjBY2dzWoLHD1AKRDzf22lJOzymjC_TPEfIeN-d1snjMaZHXJbVByhv0evRxgLvDvMU3V59-XFx3dx8__rt4vymcZ2iSyP4qKyzo-rA80FLygarlbOddJQxoZ3wjPdWCs0VVHCgqnKDUJzpcdSMn6Kz_d05p58rlMXsQnEQo50grcVIqUXPuajgxxfB-iihBCOs--dN2kslxR_w8x50OZWSYTRzDjubfxlKzJMbszXP3ZgnN4ZIU93U8PtDyzrU9d_oQUYFLvcA1P89BMimuACTAx8yuMX4FP6n5zdBNqdz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17686524</pqid></control><display><type>article</type><title>A thin-walled carotid vessel phantom for Doppler ultrasound flow studies</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Poepping, Tamie L. ; Nikolov, Hristo N. ; Thorne, Meghan L. ; Holdsworth, David W.</creator><creatorcontrib>Poepping, Tamie L. ; Nikolov, Hristo N. ; Thorne, Meghan L. ; Holdsworth, David W.</creatorcontrib><description>A technique is discussed for producing a robust ultrasound (US)-compatible flow phantom that consists of a thin-walled silicone-elastomer vessel with a lumen of arbitrary geometry, embedded in an agar-based tissue-mimicking material (TMM). The TMM has an acoustic attenuation of 0.56 dB cm −1 MHz −1 at 5 MHz, with nearly linear frequency-dependence and acoustic velocity of 1539 ± 4 m s −1. The vessel-mimicking material (VMM) has an acoustic attenuation of 3.5 dB cm −1 MHz −1 with linear frequency-dependence and an acoustic velocity of 1020 ± 20 m s −1. Scattering particles, which are added to the VMM to increase echogenicity and add speckle texture, lead to higher attenuation, depending on particle concentration and frequency. The VMM is stable over time, with a Young’s elastic modulus of 1.3 to 1.7 MPa for strains of up to 10%, which mimics human arteries under typical physiological conditions. The phantom is sealed to prevent TMM exposure to air or water, to avoid changes to the acoustic velocity.</description><identifier>ISSN: 0301-5629</identifier><identifier>EISSN: 1879-291X</identifier><identifier>DOI: 10.1016/j.ultrasmedbio.2004.06.003</identifier><identifier>PMID: 15474751</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Acoustic attenuation ; Acoustic velocity ; Carotid Arteries - diagnostic imaging ; Carotid artery bifurcation ; Doppler ultrasound ; Elastic modulus ; Flow phantom ; Humans ; Phantoms, Imaging ; Regional Blood Flow ; Silicone elastomer ; Silicone Elastomers ; Speed of sound ; Sylgard 184 ; Tissue-mimicking material ; Ultrasonography, Doppler - standards ; Vessel-mimicking material</subject><ispartof>Ultrasound in medicine &amp; biology, 2004-08, Vol.30 (8), p.1067-1078</ispartof><rights>2004 World Federation for Ultrasound in Medicine &amp; Biology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-53f8acaf84ed3b9612ba98ca46c12259c5d237a65938eacab18d3bb58329ff923</citedby><cites>FETCH-LOGICAL-c481t-53f8acaf84ed3b9612ba98ca46c12259c5d237a65938eacab18d3bb58329ff923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultrasmedbio.2004.06.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15474751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poepping, Tamie L.</creatorcontrib><creatorcontrib>Nikolov, Hristo N.</creatorcontrib><creatorcontrib>Thorne, Meghan L.</creatorcontrib><creatorcontrib>Holdsworth, David W.</creatorcontrib><title>A thin-walled carotid vessel phantom for Doppler ultrasound flow studies</title><title>Ultrasound in medicine &amp; biology</title><addtitle>Ultrasound Med Biol</addtitle><description>A technique is discussed for producing a robust ultrasound (US)-compatible flow phantom that consists of a thin-walled silicone-elastomer vessel with a lumen of arbitrary geometry, embedded in an agar-based tissue-mimicking material (TMM). The TMM has an acoustic attenuation of 0.56 dB cm −1 MHz −1 at 5 MHz, with nearly linear frequency-dependence and acoustic velocity of 1539 ± 4 m s −1. The vessel-mimicking material (VMM) has an acoustic attenuation of 3.5 dB cm −1 MHz −1 with linear frequency-dependence and an acoustic velocity of 1020 ± 20 m s −1. Scattering particles, which are added to the VMM to increase echogenicity and add speckle texture, lead to higher attenuation, depending on particle concentration and frequency. The VMM is stable over time, with a Young’s elastic modulus of 1.3 to 1.7 MPa for strains of up to 10%, which mimics human arteries under typical physiological conditions. The phantom is sealed to prevent TMM exposure to air or water, to avoid changes to the acoustic velocity.</description><subject>Acoustic attenuation</subject><subject>Acoustic velocity</subject><subject>Carotid Arteries - diagnostic imaging</subject><subject>Carotid artery bifurcation</subject><subject>Doppler ultrasound</subject><subject>Elastic modulus</subject><subject>Flow phantom</subject><subject>Humans</subject><subject>Phantoms, Imaging</subject><subject>Regional Blood Flow</subject><subject>Silicone elastomer</subject><subject>Silicone Elastomers</subject><subject>Speed of sound</subject><subject>Sylgard 184</subject><subject>Tissue-mimicking material</subject><subject>Ultrasonography, Doppler - standards</subject><subject>Vessel-mimicking material</subject><issn>0301-5629</issn><issn>1879-291X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1rFTEUhoNU7G31L0hwUdzMmI9JJnFXWmuFghsL3YVMcobmkjsZk5kW_72p94JdVVdncZ73vHAehD5Q0lJC5adtu8Yl27IDP4TUMkK6lsiWEP4KbajqdcM0vTtCG8IJbYRk-hidlLIlhPSS92_QMRVd3_WCbtD1OV7uw9Q82hjBY2dzWoLHD1AKRDzf22lJOzymjC_TPEfIeN-d1snjMaZHXJbVByhv0evRxgLvDvMU3V59-XFx3dx8__rt4vymcZ2iSyP4qKyzo-rA80FLygarlbOddJQxoZ3wjPdWCs0VVHCgqnKDUJzpcdSMn6Kz_d05p58rlMXsQnEQo50grcVIqUXPuajgxxfB-iihBCOs--dN2kslxR_w8x50OZWSYTRzDjubfxlKzJMbszXP3ZgnN4ZIU93U8PtDyzrU9d_oQUYFLvcA1P89BMimuACTAx8yuMX4FP6n5zdBNqdz</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>Poepping, Tamie L.</creator><creator>Nikolov, Hristo N.</creator><creator>Thorne, Meghan L.</creator><creator>Holdsworth, David W.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20040801</creationdate><title>A thin-walled carotid vessel phantom for Doppler ultrasound flow studies</title><author>Poepping, Tamie L. ; Nikolov, Hristo N. ; Thorne, Meghan L. ; Holdsworth, David W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-53f8acaf84ed3b9612ba98ca46c12259c5d237a65938eacab18d3bb58329ff923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acoustic attenuation</topic><topic>Acoustic velocity</topic><topic>Carotid Arteries - diagnostic imaging</topic><topic>Carotid artery bifurcation</topic><topic>Doppler ultrasound</topic><topic>Elastic modulus</topic><topic>Flow phantom</topic><topic>Humans</topic><topic>Phantoms, Imaging</topic><topic>Regional Blood Flow</topic><topic>Silicone elastomer</topic><topic>Silicone Elastomers</topic><topic>Speed of sound</topic><topic>Sylgard 184</topic><topic>Tissue-mimicking material</topic><topic>Ultrasonography, Doppler - standards</topic><topic>Vessel-mimicking material</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poepping, Tamie L.</creatorcontrib><creatorcontrib>Nikolov, Hristo N.</creatorcontrib><creatorcontrib>Thorne, Meghan L.</creatorcontrib><creatorcontrib>Holdsworth, David W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasound in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poepping, Tamie L.</au><au>Nikolov, Hristo N.</au><au>Thorne, Meghan L.</au><au>Holdsworth, David W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thin-walled carotid vessel phantom for Doppler ultrasound flow studies</atitle><jtitle>Ultrasound in medicine &amp; biology</jtitle><addtitle>Ultrasound Med Biol</addtitle><date>2004-08-01</date><risdate>2004</risdate><volume>30</volume><issue>8</issue><spage>1067</spage><epage>1078</epage><pages>1067-1078</pages><issn>0301-5629</issn><eissn>1879-291X</eissn><abstract>A technique is discussed for producing a robust ultrasound (US)-compatible flow phantom that consists of a thin-walled silicone-elastomer vessel with a lumen of arbitrary geometry, embedded in an agar-based tissue-mimicking material (TMM). The TMM has an acoustic attenuation of 0.56 dB cm −1 MHz −1 at 5 MHz, with nearly linear frequency-dependence and acoustic velocity of 1539 ± 4 m s −1. The vessel-mimicking material (VMM) has an acoustic attenuation of 3.5 dB cm −1 MHz −1 with linear frequency-dependence and an acoustic velocity of 1020 ± 20 m s −1. Scattering particles, which are added to the VMM to increase echogenicity and add speckle texture, lead to higher attenuation, depending on particle concentration and frequency. The VMM is stable over time, with a Young’s elastic modulus of 1.3 to 1.7 MPa for strains of up to 10%, which mimics human arteries under typical physiological conditions. The phantom is sealed to prevent TMM exposure to air or water, to avoid changes to the acoustic velocity.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>15474751</pmid><doi>10.1016/j.ultrasmedbio.2004.06.003</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-5629
ispartof Ultrasound in medicine & biology, 2004-08, Vol.30 (8), p.1067-1078
issn 0301-5629
1879-291X
language eng
recordid cdi_proquest_miscellaneous_66957335
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Acoustic attenuation
Acoustic velocity
Carotid Arteries - diagnostic imaging
Carotid artery bifurcation
Doppler ultrasound
Elastic modulus
Flow phantom
Humans
Phantoms, Imaging
Regional Blood Flow
Silicone elastomer
Silicone Elastomers
Speed of sound
Sylgard 184
Tissue-mimicking material
Ultrasonography, Doppler - standards
Vessel-mimicking material
title A thin-walled carotid vessel phantom for Doppler ultrasound flow studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A19%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thin-walled%20carotid%20vessel%20phantom%20for%20Doppler%20ultrasound%20flow%20studies&rft.jtitle=Ultrasound%20in%20medicine%20&%20biology&rft.au=Poepping,%20Tamie%20L.&rft.date=2004-08-01&rft.volume=30&rft.issue=8&rft.spage=1067&rft.epage=1078&rft.pages=1067-1078&rft.issn=0301-5629&rft.eissn=1879-291X&rft_id=info:doi/10.1016/j.ultrasmedbio.2004.06.003&rft_dat=%3Cproquest_cross%3E66957335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17686524&rft_id=info:pmid/15474751&rft_els_id=S0301562904001541&rfr_iscdi=true