A thin-walled carotid vessel phantom for Doppler ultrasound flow studies
A technique is discussed for producing a robust ultrasound (US)-compatible flow phantom that consists of a thin-walled silicone-elastomer vessel with a lumen of arbitrary geometry, embedded in an agar-based tissue-mimicking material (TMM). The TMM has an acoustic attenuation of 0.56 dB cm −1 MHz −1...
Gespeichert in:
Veröffentlicht in: | Ultrasound in medicine & biology 2004-08, Vol.30 (8), p.1067-1078 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1078 |
---|---|
container_issue | 8 |
container_start_page | 1067 |
container_title | Ultrasound in medicine & biology |
container_volume | 30 |
creator | Poepping, Tamie L. Nikolov, Hristo N. Thorne, Meghan L. Holdsworth, David W. |
description | A technique is discussed for producing a robust ultrasound (US)-compatible flow phantom that consists of a thin-walled silicone-elastomer vessel with a lumen of arbitrary geometry, embedded in an agar-based tissue-mimicking material (TMM). The TMM has an acoustic attenuation of 0.56 dB cm
−1 MHz
−1 at 5 MHz, with nearly linear frequency-dependence and acoustic velocity of 1539 ± 4 m s
−1. The vessel-mimicking material (VMM) has an acoustic attenuation of 3.5 dB cm
−1 MHz
−1 with linear frequency-dependence and an acoustic velocity of 1020 ± 20 m s
−1. Scattering particles, which are added to the VMM to increase echogenicity and add speckle texture, lead to higher attenuation, depending on particle concentration and frequency. The VMM is stable over time, with a Young’s elastic modulus of 1.3 to 1.7 MPa for strains of up to 10%, which mimics human arteries under typical physiological conditions. The phantom is sealed to prevent TMM exposure to air or water, to avoid changes to the acoustic velocity. |
doi_str_mv | 10.1016/j.ultrasmedbio.2004.06.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66957335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301562904001541</els_id><sourcerecordid>66957335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-53f8acaf84ed3b9612ba98ca46c12259c5d237a65938eacab18d3bb58329ff923</originalsourceid><addsrcrecordid>eNqNkU1rFTEUhoNU7G31L0hwUdzMmI9JJnFXWmuFghsL3YVMcobmkjsZk5kW_72p94JdVVdncZ73vHAehD5Q0lJC5adtu8Yl27IDP4TUMkK6lsiWEP4KbajqdcM0vTtCG8IJbYRk-hidlLIlhPSS92_QMRVd3_WCbtD1OV7uw9Q82hjBY2dzWoLHD1AKRDzf22lJOzymjC_TPEfIeN-d1snjMaZHXJbVByhv0evRxgLvDvMU3V59-XFx3dx8__rt4vymcZ2iSyP4qKyzo-rA80FLygarlbOddJQxoZ3wjPdWCs0VVHCgqnKDUJzpcdSMn6Kz_d05p58rlMXsQnEQo50grcVIqUXPuajgxxfB-iihBCOs--dN2kslxR_w8x50OZWSYTRzDjubfxlKzJMbszXP3ZgnN4ZIU93U8PtDyzrU9d_oQUYFLvcA1P89BMimuACTAx8yuMX4FP6n5zdBNqdz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17686524</pqid></control><display><type>article</type><title>A thin-walled carotid vessel phantom for Doppler ultrasound flow studies</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Poepping, Tamie L. ; Nikolov, Hristo N. ; Thorne, Meghan L. ; Holdsworth, David W.</creator><creatorcontrib>Poepping, Tamie L. ; Nikolov, Hristo N. ; Thorne, Meghan L. ; Holdsworth, David W.</creatorcontrib><description>A technique is discussed for producing a robust ultrasound (US)-compatible flow phantom that consists of a thin-walled silicone-elastomer vessel with a lumen of arbitrary geometry, embedded in an agar-based tissue-mimicking material (TMM). The TMM has an acoustic attenuation of 0.56 dB cm
−1 MHz
−1 at 5 MHz, with nearly linear frequency-dependence and acoustic velocity of 1539 ± 4 m s
−1. The vessel-mimicking material (VMM) has an acoustic attenuation of 3.5 dB cm
−1 MHz
−1 with linear frequency-dependence and an acoustic velocity of 1020 ± 20 m s
−1. Scattering particles, which are added to the VMM to increase echogenicity and add speckle texture, lead to higher attenuation, depending on particle concentration and frequency. The VMM is stable over time, with a Young’s elastic modulus of 1.3 to 1.7 MPa for strains of up to 10%, which mimics human arteries under typical physiological conditions. The phantom is sealed to prevent TMM exposure to air or water, to avoid changes to the acoustic velocity.</description><identifier>ISSN: 0301-5629</identifier><identifier>EISSN: 1879-291X</identifier><identifier>DOI: 10.1016/j.ultrasmedbio.2004.06.003</identifier><identifier>PMID: 15474751</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Acoustic attenuation ; Acoustic velocity ; Carotid Arteries - diagnostic imaging ; Carotid artery bifurcation ; Doppler ultrasound ; Elastic modulus ; Flow phantom ; Humans ; Phantoms, Imaging ; Regional Blood Flow ; Silicone elastomer ; Silicone Elastomers ; Speed of sound ; Sylgard 184 ; Tissue-mimicking material ; Ultrasonography, Doppler - standards ; Vessel-mimicking material</subject><ispartof>Ultrasound in medicine & biology, 2004-08, Vol.30 (8), p.1067-1078</ispartof><rights>2004 World Federation for Ultrasound in Medicine & Biology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-53f8acaf84ed3b9612ba98ca46c12259c5d237a65938eacab18d3bb58329ff923</citedby><cites>FETCH-LOGICAL-c481t-53f8acaf84ed3b9612ba98ca46c12259c5d237a65938eacab18d3bb58329ff923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultrasmedbio.2004.06.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15474751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poepping, Tamie L.</creatorcontrib><creatorcontrib>Nikolov, Hristo N.</creatorcontrib><creatorcontrib>Thorne, Meghan L.</creatorcontrib><creatorcontrib>Holdsworth, David W.</creatorcontrib><title>A thin-walled carotid vessel phantom for Doppler ultrasound flow studies</title><title>Ultrasound in medicine & biology</title><addtitle>Ultrasound Med Biol</addtitle><description>A technique is discussed for producing a robust ultrasound (US)-compatible flow phantom that consists of a thin-walled silicone-elastomer vessel with a lumen of arbitrary geometry, embedded in an agar-based tissue-mimicking material (TMM). The TMM has an acoustic attenuation of 0.56 dB cm
−1 MHz
−1 at 5 MHz, with nearly linear frequency-dependence and acoustic velocity of 1539 ± 4 m s
−1. The vessel-mimicking material (VMM) has an acoustic attenuation of 3.5 dB cm
−1 MHz
−1 with linear frequency-dependence and an acoustic velocity of 1020 ± 20 m s
−1. Scattering particles, which are added to the VMM to increase echogenicity and add speckle texture, lead to higher attenuation, depending on particle concentration and frequency. The VMM is stable over time, with a Young’s elastic modulus of 1.3 to 1.7 MPa for strains of up to 10%, which mimics human arteries under typical physiological conditions. The phantom is sealed to prevent TMM exposure to air or water, to avoid changes to the acoustic velocity.</description><subject>Acoustic attenuation</subject><subject>Acoustic velocity</subject><subject>Carotid Arteries - diagnostic imaging</subject><subject>Carotid artery bifurcation</subject><subject>Doppler ultrasound</subject><subject>Elastic modulus</subject><subject>Flow phantom</subject><subject>Humans</subject><subject>Phantoms, Imaging</subject><subject>Regional Blood Flow</subject><subject>Silicone elastomer</subject><subject>Silicone Elastomers</subject><subject>Speed of sound</subject><subject>Sylgard 184</subject><subject>Tissue-mimicking material</subject><subject>Ultrasonography, Doppler - standards</subject><subject>Vessel-mimicking material</subject><issn>0301-5629</issn><issn>1879-291X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1rFTEUhoNU7G31L0hwUdzMmI9JJnFXWmuFghsL3YVMcobmkjsZk5kW_72p94JdVVdncZ73vHAehD5Q0lJC5adtu8Yl27IDP4TUMkK6lsiWEP4KbajqdcM0vTtCG8IJbYRk-hidlLIlhPSS92_QMRVd3_WCbtD1OV7uw9Q82hjBY2dzWoLHD1AKRDzf22lJOzymjC_TPEfIeN-d1snjMaZHXJbVByhv0evRxgLvDvMU3V59-XFx3dx8__rt4vymcZ2iSyP4qKyzo-rA80FLygarlbOddJQxoZ3wjPdWCs0VVHCgqnKDUJzpcdSMn6Kz_d05p58rlMXsQnEQo50grcVIqUXPuajgxxfB-iihBCOs--dN2kslxR_w8x50OZWSYTRzDjubfxlKzJMbszXP3ZgnN4ZIU93U8PtDyzrU9d_oQUYFLvcA1P89BMimuACTAx8yuMX4FP6n5zdBNqdz</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>Poepping, Tamie L.</creator><creator>Nikolov, Hristo N.</creator><creator>Thorne, Meghan L.</creator><creator>Holdsworth, David W.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20040801</creationdate><title>A thin-walled carotid vessel phantom for Doppler ultrasound flow studies</title><author>Poepping, Tamie L. ; Nikolov, Hristo N. ; Thorne, Meghan L. ; Holdsworth, David W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-53f8acaf84ed3b9612ba98ca46c12259c5d237a65938eacab18d3bb58329ff923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acoustic attenuation</topic><topic>Acoustic velocity</topic><topic>Carotid Arteries - diagnostic imaging</topic><topic>Carotid artery bifurcation</topic><topic>Doppler ultrasound</topic><topic>Elastic modulus</topic><topic>Flow phantom</topic><topic>Humans</topic><topic>Phantoms, Imaging</topic><topic>Regional Blood Flow</topic><topic>Silicone elastomer</topic><topic>Silicone Elastomers</topic><topic>Speed of sound</topic><topic>Sylgard 184</topic><topic>Tissue-mimicking material</topic><topic>Ultrasonography, Doppler - standards</topic><topic>Vessel-mimicking material</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poepping, Tamie L.</creatorcontrib><creatorcontrib>Nikolov, Hristo N.</creatorcontrib><creatorcontrib>Thorne, Meghan L.</creatorcontrib><creatorcontrib>Holdsworth, David W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasound in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poepping, Tamie L.</au><au>Nikolov, Hristo N.</au><au>Thorne, Meghan L.</au><au>Holdsworth, David W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thin-walled carotid vessel phantom for Doppler ultrasound flow studies</atitle><jtitle>Ultrasound in medicine & biology</jtitle><addtitle>Ultrasound Med Biol</addtitle><date>2004-08-01</date><risdate>2004</risdate><volume>30</volume><issue>8</issue><spage>1067</spage><epage>1078</epage><pages>1067-1078</pages><issn>0301-5629</issn><eissn>1879-291X</eissn><abstract>A technique is discussed for producing a robust ultrasound (US)-compatible flow phantom that consists of a thin-walled silicone-elastomer vessel with a lumen of arbitrary geometry, embedded in an agar-based tissue-mimicking material (TMM). The TMM has an acoustic attenuation of 0.56 dB cm
−1 MHz
−1 at 5 MHz, with nearly linear frequency-dependence and acoustic velocity of 1539 ± 4 m s
−1. The vessel-mimicking material (VMM) has an acoustic attenuation of 3.5 dB cm
−1 MHz
−1 with linear frequency-dependence and an acoustic velocity of 1020 ± 20 m s
−1. Scattering particles, which are added to the VMM to increase echogenicity and add speckle texture, lead to higher attenuation, depending on particle concentration and frequency. The VMM is stable over time, with a Young’s elastic modulus of 1.3 to 1.7 MPa for strains of up to 10%, which mimics human arteries under typical physiological conditions. The phantom is sealed to prevent TMM exposure to air or water, to avoid changes to the acoustic velocity.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>15474751</pmid><doi>10.1016/j.ultrasmedbio.2004.06.003</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-5629 |
ispartof | Ultrasound in medicine & biology, 2004-08, Vol.30 (8), p.1067-1078 |
issn | 0301-5629 1879-291X |
language | eng |
recordid | cdi_proquest_miscellaneous_66957335 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Acoustic attenuation Acoustic velocity Carotid Arteries - diagnostic imaging Carotid artery bifurcation Doppler ultrasound Elastic modulus Flow phantom Humans Phantoms, Imaging Regional Blood Flow Silicone elastomer Silicone Elastomers Speed of sound Sylgard 184 Tissue-mimicking material Ultrasonography, Doppler - standards Vessel-mimicking material |
title | A thin-walled carotid vessel phantom for Doppler ultrasound flow studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A19%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thin-walled%20carotid%20vessel%20phantom%20for%20Doppler%20ultrasound%20flow%20studies&rft.jtitle=Ultrasound%20in%20medicine%20&%20biology&rft.au=Poepping,%20Tamie%20L.&rft.date=2004-08-01&rft.volume=30&rft.issue=8&rft.spage=1067&rft.epage=1078&rft.pages=1067-1078&rft.issn=0301-5629&rft.eissn=1879-291X&rft_id=info:doi/10.1016/j.ultrasmedbio.2004.06.003&rft_dat=%3Cproquest_cross%3E66957335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17686524&rft_id=info:pmid/15474751&rft_els_id=S0301562904001541&rfr_iscdi=true |