Identification of cellular objective for elucidating the physiological state of plasmid-bearing Escherichia coli using genome-scale in silico analysis
The presence of multiple copies of plasmids in Escherichia coli could induce a complex cascade of physiological changes known as the metabolic burden response. In this work, the physiological effect of such plasmid metabolic burden on E. coli metabolism was investigated by constraint‐based genome‐sc...
Gespeichert in:
Veröffentlicht in: | Biotechnology progress 2009-01, Vol.25 (1), p.61-67 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67 |
---|---|
container_issue | 1 |
container_start_page | 61 |
container_title | Biotechnology progress |
container_volume | 25 |
creator | Ow, Dave Siak-Wei Lee, Dong-Yup Yap, Miranda Gek-Sim Oh, Steve Kah-Weng |
description | The presence of multiple copies of plasmids in Escherichia coli could induce a complex cascade of physiological changes known as the metabolic burden response. In this work, the physiological effect of such plasmid metabolic burden on E. coli metabolism was investigated by constraint‐based genome‐scale flux modeling. We systematically applied three cellular objectives: (a) maximizing growth rate, (b) maximizing plasmid production, and (c) maximizing maintenance energy expenditure to quantify in silico flux distributions. These simulated results were compared with experimental flux information to identify which of these cellular objectives best describes the physiological and metabolic states of plasmid‐bearing (P+) E. coli. Unlike the wild‐type E. coli cells that have directed the metabolism toward an optimum growth rate under the nutrient‐limited condition, the maximum growth rate objective could not correctly predict the metabolic state of recombinant P+ cells. Instead, flux simulations by maximizing maintenance energy expenditure showed good consistency with experimental observation, indicating that the P+ cells are energetically less efficient and could require higher maintenance energy. This study demonstrates that the cellular objective of maximizing maintenance energy expenditure provides a better description of the underlying physiological state in recombinant microorganisms relevant to biotechnological applications. © 2008 American Institute of Chemical Engineers Biotechnol. Prog., 2009 |
doi_str_mv | 10.1002/btpr.51 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66951532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66951532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5131-3b7be39b3bb697c37d0c6e9b10a63ff089c04dc029fc15cc71697f6883e8a71c3</originalsourceid><addsrcrecordid>eNqF0c1u1DAQB3ALgeiyIN4A-QIcUIo_ajs5QlXaSlWpaBESF8t2xrsu3jjYCbAvwvOSdFflhDhZsn7_GXsGoeeUHFJC2Fs79PlQ0AdoQQUjlSScP0SLWglZqYbXB-hJKbeEkJpI9hgd0IaxIyHEAv0-b6Ebgg_ODCF1OHnsIMYxmoyTvQU3hB-AfcoY4uhCO6luhYc14H69LSHFtJqiEZfBDDCn-2jKJrSVBZNnelLcGnJw62CwSzHgsczXK-jSBqoyZQGHDpcQg0vYdCZOZctT9MibWODZ_lyizx9Obo7PqouPp-fH7y4qJyinFbfKAm8st1Y2ynHVEiehsZQYyb0ndePIUesIa7yjwjlFJ-ZlXXOojaKOL9GrXd0-p-8jlEFvQpkHYDpIY9FSNoIKzv4LGaGCyulRS_R6B11OpWTwus9hY_JWU6LnXel5V_pOvtiXHO0G2r9uv5wJvNwDM8_JZ9O5UO4do0zV048m92bnfoYI23_10-9vrj7dta12OpQBft1rk79pqbgS-svlqT5jil1dfr3W1_wPyqS9FQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20151651</pqid></control><display><type>article</type><title>Identification of cellular objective for elucidating the physiological state of plasmid-bearing Escherichia coli using genome-scale in silico analysis</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Ow, Dave Siak-Wei ; Lee, Dong-Yup ; Yap, Miranda Gek-Sim ; Oh, Steve Kah-Weng</creator><creatorcontrib>Ow, Dave Siak-Wei ; Lee, Dong-Yup ; Yap, Miranda Gek-Sim ; Oh, Steve Kah-Weng</creatorcontrib><description>The presence of multiple copies of plasmids in Escherichia coli could induce a complex cascade of physiological changes known as the metabolic burden response. In this work, the physiological effect of such plasmid metabolic burden on E. coli metabolism was investigated by constraint‐based genome‐scale flux modeling. We systematically applied three cellular objectives: (a) maximizing growth rate, (b) maximizing plasmid production, and (c) maximizing maintenance energy expenditure to quantify in silico flux distributions. These simulated results were compared with experimental flux information to identify which of these cellular objectives best describes the physiological and metabolic states of plasmid‐bearing (P+) E. coli. Unlike the wild‐type E. coli cells that have directed the metabolism toward an optimum growth rate under the nutrient‐limited condition, the maximum growth rate objective could not correctly predict the metabolic state of recombinant P+ cells. Instead, flux simulations by maximizing maintenance energy expenditure showed good consistency with experimental observation, indicating that the P+ cells are energetically less efficient and could require higher maintenance energy. This study demonstrates that the cellular objective of maximizing maintenance energy expenditure provides a better description of the underlying physiological state in recombinant microorganisms relevant to biotechnological applications. © 2008 American Institute of Chemical Engineers Biotechnol. Prog., 2009</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.51</identifier><identifier>PMID: 19224555</identifier><identifier>CODEN: BIPRET</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>ATP maintenance energy ; Biological and medical sciences ; Biotechnology ; cellular objective ; constraint-based flux analysis ; Energy Metabolism - genetics ; Energy Metabolism - physiology ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Bacterial ; genome-scale in silico model ; metabolic burden ; plasmid-bearing Escherichia coli ; Plasmids - genetics ; Plasmids - physiology</subject><ispartof>Biotechnology progress, 2009-01, Vol.25 (1), p.61-67</ispartof><rights>Copyright © 2008 American Institute of Chemical Engineers (AIChE)</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5131-3b7be39b3bb697c37d0c6e9b10a63ff089c04dc029fc15cc71697f6883e8a71c3</citedby><cites>FETCH-LOGICAL-c5131-3b7be39b3bb697c37d0c6e9b10a63ff089c04dc029fc15cc71697f6883e8a71c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.51$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.51$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,1417,23930,23931,25140,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21278716$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19224555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ow, Dave Siak-Wei</creatorcontrib><creatorcontrib>Lee, Dong-Yup</creatorcontrib><creatorcontrib>Yap, Miranda Gek-Sim</creatorcontrib><creatorcontrib>Oh, Steve Kah-Weng</creatorcontrib><title>Identification of cellular objective for elucidating the physiological state of plasmid-bearing Escherichia coli using genome-scale in silico analysis</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>The presence of multiple copies of plasmids in Escherichia coli could induce a complex cascade of physiological changes known as the metabolic burden response. In this work, the physiological effect of such plasmid metabolic burden on E. coli metabolism was investigated by constraint‐based genome‐scale flux modeling. We systematically applied three cellular objectives: (a) maximizing growth rate, (b) maximizing plasmid production, and (c) maximizing maintenance energy expenditure to quantify in silico flux distributions. These simulated results were compared with experimental flux information to identify which of these cellular objectives best describes the physiological and metabolic states of plasmid‐bearing (P+) E. coli. Unlike the wild‐type E. coli cells that have directed the metabolism toward an optimum growth rate under the nutrient‐limited condition, the maximum growth rate objective could not correctly predict the metabolic state of recombinant P+ cells. Instead, flux simulations by maximizing maintenance energy expenditure showed good consistency with experimental observation, indicating that the P+ cells are energetically less efficient and could require higher maintenance energy. This study demonstrates that the cellular objective of maximizing maintenance energy expenditure provides a better description of the underlying physiological state in recombinant microorganisms relevant to biotechnological applications. © 2008 American Institute of Chemical Engineers Biotechnol. Prog., 2009</description><subject>ATP maintenance energy</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>cellular objective</subject><subject>constraint-based flux analysis</subject><subject>Energy Metabolism - genetics</subject><subject>Energy Metabolism - physiology</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>genome-scale in silico model</subject><subject>metabolic burden</subject><subject>plasmid-bearing Escherichia coli</subject><subject>Plasmids - genetics</subject><subject>Plasmids - physiology</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1u1DAQB3ALgeiyIN4A-QIcUIo_ajs5QlXaSlWpaBESF8t2xrsu3jjYCbAvwvOSdFflhDhZsn7_GXsGoeeUHFJC2Fs79PlQ0AdoQQUjlSScP0SLWglZqYbXB-hJKbeEkJpI9hgd0IaxIyHEAv0-b6Ebgg_ODCF1OHnsIMYxmoyTvQU3hB-AfcoY4uhCO6luhYc14H69LSHFtJqiEZfBDDCn-2jKJrSVBZNnelLcGnJw62CwSzHgsczXK-jSBqoyZQGHDpcQg0vYdCZOZctT9MibWODZ_lyizx9Obo7PqouPp-fH7y4qJyinFbfKAm8st1Y2ynHVEiehsZQYyb0ndePIUesIa7yjwjlFJ-ZlXXOojaKOL9GrXd0-p-8jlEFvQpkHYDpIY9FSNoIKzv4LGaGCyulRS_R6B11OpWTwus9hY_JWU6LnXel5V_pOvtiXHO0G2r9uv5wJvNwDM8_JZ9O5UO4do0zV048m92bnfoYI23_10-9vrj7dta12OpQBft1rk79pqbgS-svlqT5jil1dfr3W1_wPyqS9FQ</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Ow, Dave Siak-Wei</creator><creator>Lee, Dong-Yup</creator><creator>Yap, Miranda Gek-Sim</creator><creator>Oh, Steve Kah-Weng</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200901</creationdate><title>Identification of cellular objective for elucidating the physiological state of plasmid-bearing Escherichia coli using genome-scale in silico analysis</title><author>Ow, Dave Siak-Wei ; Lee, Dong-Yup ; Yap, Miranda Gek-Sim ; Oh, Steve Kah-Weng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5131-3b7be39b3bb697c37d0c6e9b10a63ff089c04dc029fc15cc71697f6883e8a71c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ATP maintenance energy</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>cellular objective</topic><topic>constraint-based flux analysis</topic><topic>Energy Metabolism - genetics</topic><topic>Energy Metabolism - physiology</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>genome-scale in silico model</topic><topic>metabolic burden</topic><topic>plasmid-bearing Escherichia coli</topic><topic>Plasmids - genetics</topic><topic>Plasmids - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ow, Dave Siak-Wei</creatorcontrib><creatorcontrib>Lee, Dong-Yup</creatorcontrib><creatorcontrib>Yap, Miranda Gek-Sim</creatorcontrib><creatorcontrib>Oh, Steve Kah-Weng</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ow, Dave Siak-Wei</au><au>Lee, Dong-Yup</au><au>Yap, Miranda Gek-Sim</au><au>Oh, Steve Kah-Weng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of cellular objective for elucidating the physiological state of plasmid-bearing Escherichia coli using genome-scale in silico analysis</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>2009-01</date><risdate>2009</risdate><volume>25</volume><issue>1</issue><spage>61</spage><epage>67</epage><pages>61-67</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><coden>BIPRET</coden><abstract>The presence of multiple copies of plasmids in Escherichia coli could induce a complex cascade of physiological changes known as the metabolic burden response. In this work, the physiological effect of such plasmid metabolic burden on E. coli metabolism was investigated by constraint‐based genome‐scale flux modeling. We systematically applied three cellular objectives: (a) maximizing growth rate, (b) maximizing plasmid production, and (c) maximizing maintenance energy expenditure to quantify in silico flux distributions. These simulated results were compared with experimental flux information to identify which of these cellular objectives best describes the physiological and metabolic states of plasmid‐bearing (P+) E. coli. Unlike the wild‐type E. coli cells that have directed the metabolism toward an optimum growth rate under the nutrient‐limited condition, the maximum growth rate objective could not correctly predict the metabolic state of recombinant P+ cells. Instead, flux simulations by maximizing maintenance energy expenditure showed good consistency with experimental observation, indicating that the P+ cells are energetically less efficient and could require higher maintenance energy. This study demonstrates that the cellular objective of maximizing maintenance energy expenditure provides a better description of the underlying physiological state in recombinant microorganisms relevant to biotechnological applications. © 2008 American Institute of Chemical Engineers Biotechnol. Prog., 2009</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19224555</pmid><doi>10.1002/btpr.51</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-7938 |
ispartof | Biotechnology progress, 2009-01, Vol.25 (1), p.61-67 |
issn | 8756-7938 1520-6033 |
language | eng |
recordid | cdi_proquest_miscellaneous_66951532 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | ATP maintenance energy Biological and medical sciences Biotechnology cellular objective constraint-based flux analysis Energy Metabolism - genetics Energy Metabolism - physiology Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Bacterial genome-scale in silico model metabolic burden plasmid-bearing Escherichia coli Plasmids - genetics Plasmids - physiology |
title | Identification of cellular objective for elucidating the physiological state of plasmid-bearing Escherichia coli using genome-scale in silico analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A13%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20cellular%20objective%20for%20elucidating%20the%20physiological%20state%20of%20plasmid-bearing%20Escherichia%20coli%20using%20genome-scale%20in%20silico%20analysis&rft.jtitle=Biotechnology%20progress&rft.au=Ow,%20Dave%20Siak-Wei&rft.date=2009-01&rft.volume=25&rft.issue=1&rft.spage=61&rft.epage=67&rft.pages=61-67&rft.issn=8756-7938&rft.eissn=1520-6033&rft.coden=BIPRET&rft_id=info:doi/10.1002/btpr.51&rft_dat=%3Cproquest_cross%3E66951532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20151651&rft_id=info:pmid/19224555&rfr_iscdi=true |