N-cadherin modulates voltage activated calcium influx via RhoA, p120-catenin, and myosin–actin interaction
N-cadherin is a transmembrane adhesion receptor that contributes to neuronal development and synapse formation through homophilic interactions that provide structural-adhesive support to contacts between cell membranes. In addition, N-cadherin homotypic binding may initiate cell signaling that regul...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular neuroscience 2009-03, Vol.40 (3), p.390-400 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 400 |
---|---|
container_issue | 3 |
container_start_page | 390 |
container_title | Molecular and cellular neuroscience |
container_volume | 40 |
creator | Marrs, Glen S. Theisen, Christopher S. Brusés, Juan L. |
description | N-cadherin is a transmembrane adhesion receptor that contributes to neuronal development and synapse formation through homophilic interactions that provide structural-adhesive support to contacts between cell membranes. In addition, N-cadherin homotypic binding may initiate cell signaling that regulates neuronal physiology. In this study, we investigated signaling capabilities of N-cadherin that control voltage activated calcium influx. Using whole-cell voltage clamp recording of isolated inward calcium currents in freshly isolated chick ciliary ganglion neurons we show that the juxtamembrane region of N-cadherin cytoplasmic domain regulates high-threshold voltage activated calcium currents by interacting with p120-catenin and activating RhoA. This regulatory mechanism requires myosin interaction with actin. Furthermore, N-cadherin homophilic binding enhanced voltage activated calcium current amplitude in dissociated neurons that have already developed mature synaptic contacts
in vivo. The increase in calcium current amplitude was not affected by brefeldin A suggesting that the effect is caused via direct channel modulation and not by increasing channel expression. In contrast, homotypic N-cadherin interaction failed to regulate calcium influx in freshly isolated immature neurons. However, RhoA inhibitors enhanced calcium current amplitude in these immature neurons, suggesting that the inhibitory effect of RhoA on calcium entry is regulated during neuronal development and synapse maturation. These results indicate that N-cadherin modulates voltage activated calcium entry by a mechanism that involves RhoA activity and its downstream effects on the cytoskeleton, and suggest that N-cadherin provides support for synaptic maturation and sustained synaptic activity by facilitating voltage activated calcium influx. |
doi_str_mv | 10.1016/j.mcn.2008.12.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66950240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044743108003151</els_id><sourcerecordid>20358246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-58bbb4ce4fba6c07c5807bccd41eceb05ba02e37330121e180fcebd73fa42d563</originalsourceid><addsrcrecordid>eNqFkc1u1TAQhS0Eoj_wAGyQV6yaMP7Jn7qqKmgrVSChdm059oT6KrFv7eSK7ngH3pAnwdG9Ert2MzManfMtziHkA4OSAas_b8rJ-JIDtCXjJUDzihwz6KqiE7x5vd5SFo0U7IicpLQBgIp34i05Yh2reR7HZPxWGG0fMDpPp2CXUc-Y6C6Ms_6JVJvZ7fLHUqNH45aJOj-Myy-6c5r-eAgXZ3TLOGTEjN75M6q9pdNTSM7__f1ndfvsmDGuZ_DvyJtBjwnfH_Ypuf_65e7yurj9fnVzeXFbGNmxuajavu-lQTn0ujbQmKqFpjfGSoYGe6h6DRxFIwQwzpC1MOS3bcSgJbdVLU7Jpz13G8PjgmlWk0sGx1F7DEtSdd1VwCW8KOQgqpbLlcj2QhNDShEHtY1u0vFJMVBrF2qjchdq7UIxrnIX2fPxAF_6Ce1_xyH8LDjfCzBnsXMYVTIOvUHrIppZ2eCewf8DcAGb6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20358246</pqid></control><display><type>article</type><title>N-cadherin modulates voltage activated calcium influx via RhoA, p120-catenin, and myosin–actin interaction</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Marrs, Glen S. ; Theisen, Christopher S. ; Brusés, Juan L.</creator><creatorcontrib>Marrs, Glen S. ; Theisen, Christopher S. ; Brusés, Juan L.</creatorcontrib><description>N-cadherin is a transmembrane adhesion receptor that contributes to neuronal development and synapse formation through homophilic interactions that provide structural-adhesive support to contacts between cell membranes. In addition, N-cadherin homotypic binding may initiate cell signaling that regulates neuronal physiology. In this study, we investigated signaling capabilities of N-cadherin that control voltage activated calcium influx. Using whole-cell voltage clamp recording of isolated inward calcium currents in freshly isolated chick ciliary ganglion neurons we show that the juxtamembrane region of N-cadherin cytoplasmic domain regulates high-threshold voltage activated calcium currents by interacting with p120-catenin and activating RhoA. This regulatory mechanism requires myosin interaction with actin. Furthermore, N-cadherin homophilic binding enhanced voltage activated calcium current amplitude in dissociated neurons that have already developed mature synaptic contacts
in vivo. The increase in calcium current amplitude was not affected by brefeldin A suggesting that the effect is caused via direct channel modulation and not by increasing channel expression. In contrast, homotypic N-cadherin interaction failed to regulate calcium influx in freshly isolated immature neurons. However, RhoA inhibitors enhanced calcium current amplitude in these immature neurons, suggesting that the inhibitory effect of RhoA on calcium entry is regulated during neuronal development and synapse maturation. These results indicate that N-cadherin modulates voltage activated calcium entry by a mechanism that involves RhoA activity and its downstream effects on the cytoskeleton, and suggest that N-cadherin provides support for synaptic maturation and sustained synaptic activity by facilitating voltage activated calcium influx.</description><identifier>ISSN: 1044-7431</identifier><identifier>EISSN: 1095-9327</identifier><identifier>DOI: 10.1016/j.mcn.2008.12.007</identifier><identifier>PMID: 19162191</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actins - genetics ; Actins - metabolism ; Animals ; Cadherins - genetics ; Cadherins - metabolism ; Calcium - metabolism ; Catenins ; Cell adhesion ; Cell Adhesion Molecules - genetics ; Cell Adhesion Molecules - metabolism ; Cells, Cultured ; Chickens ; CHO Cells ; Ciliary ganglion ; Cricetinae ; Cricetulus ; Cytoskeletal Proteins - genetics ; Cytoskeletal Proteins - metabolism ; Cytoskeleton ; Humans ; Myosins - genetics ; Myosins - metabolism ; N-cadherin ; Neural development ; Neurons - cytology ; Neurons - metabolism ; p120-catenin ; Patch-Clamp Techniques ; Phosphoproteins - genetics ; Phosphoproteins - metabolism ; rhoA GTP-Binding Protein - genetics ; rhoA GTP-Binding Protein - metabolism ; RhoA GTPase ; Voltage activated calcium currents</subject><ispartof>Molecular and cellular neuroscience, 2009-03, Vol.40 (3), p.390-400</ispartof><rights>2008 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-58bbb4ce4fba6c07c5807bccd41eceb05ba02e37330121e180fcebd73fa42d563</citedby><cites>FETCH-LOGICAL-c491t-58bbb4ce4fba6c07c5807bccd41eceb05ba02e37330121e180fcebd73fa42d563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1044743108003151$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19162191$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marrs, Glen S.</creatorcontrib><creatorcontrib>Theisen, Christopher S.</creatorcontrib><creatorcontrib>Brusés, Juan L.</creatorcontrib><title>N-cadherin modulates voltage activated calcium influx via RhoA, p120-catenin, and myosin–actin interaction</title><title>Molecular and cellular neuroscience</title><addtitle>Mol Cell Neurosci</addtitle><description>N-cadherin is a transmembrane adhesion receptor that contributes to neuronal development and synapse formation through homophilic interactions that provide structural-adhesive support to contacts between cell membranes. In addition, N-cadherin homotypic binding may initiate cell signaling that regulates neuronal physiology. In this study, we investigated signaling capabilities of N-cadherin that control voltage activated calcium influx. Using whole-cell voltage clamp recording of isolated inward calcium currents in freshly isolated chick ciliary ganglion neurons we show that the juxtamembrane region of N-cadherin cytoplasmic domain regulates high-threshold voltage activated calcium currents by interacting with p120-catenin and activating RhoA. This regulatory mechanism requires myosin interaction with actin. Furthermore, N-cadherin homophilic binding enhanced voltage activated calcium current amplitude in dissociated neurons that have already developed mature synaptic contacts
in vivo. The increase in calcium current amplitude was not affected by brefeldin A suggesting that the effect is caused via direct channel modulation and not by increasing channel expression. In contrast, homotypic N-cadherin interaction failed to regulate calcium influx in freshly isolated immature neurons. However, RhoA inhibitors enhanced calcium current amplitude in these immature neurons, suggesting that the inhibitory effect of RhoA on calcium entry is regulated during neuronal development and synapse maturation. These results indicate that N-cadherin modulates voltage activated calcium entry by a mechanism that involves RhoA activity and its downstream effects on the cytoskeleton, and suggest that N-cadherin provides support for synaptic maturation and sustained synaptic activity by facilitating voltage activated calcium influx.</description><subject>Actins - genetics</subject><subject>Actins - metabolism</subject><subject>Animals</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>Calcium - metabolism</subject><subject>Catenins</subject><subject>Cell adhesion</subject><subject>Cell Adhesion Molecules - genetics</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cells, Cultured</subject><subject>Chickens</subject><subject>CHO Cells</subject><subject>Ciliary ganglion</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Cytoskeleton</subject><subject>Humans</subject><subject>Myosins - genetics</subject><subject>Myosins - metabolism</subject><subject>N-cadherin</subject><subject>Neural development</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>p120-catenin</subject><subject>Patch-Clamp Techniques</subject><subject>Phosphoproteins - genetics</subject><subject>Phosphoproteins - metabolism</subject><subject>rhoA GTP-Binding Protein - genetics</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>RhoA GTPase</subject><subject>Voltage activated calcium currents</subject><issn>1044-7431</issn><issn>1095-9327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1TAQhS0Eoj_wAGyQV6yaMP7Jn7qqKmgrVSChdm059oT6KrFv7eSK7ngH3pAnwdG9Ert2MzManfMtziHkA4OSAas_b8rJ-JIDtCXjJUDzihwz6KqiE7x5vd5SFo0U7IicpLQBgIp34i05Yh2reR7HZPxWGG0fMDpPp2CXUc-Y6C6Ms_6JVJvZ7fLHUqNH45aJOj-Myy-6c5r-eAgXZ3TLOGTEjN75M6q9pdNTSM7__f1ndfvsmDGuZ_DvyJtBjwnfH_Ypuf_65e7yurj9fnVzeXFbGNmxuajavu-lQTn0ujbQmKqFpjfGSoYGe6h6DRxFIwQwzpC1MOS3bcSgJbdVLU7Jpz13G8PjgmlWk0sGx1F7DEtSdd1VwCW8KOQgqpbLlcj2QhNDShEHtY1u0vFJMVBrF2qjchdq7UIxrnIX2fPxAF_6Ce1_xyH8LDjfCzBnsXMYVTIOvUHrIppZ2eCewf8DcAGb6A</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Marrs, Glen S.</creator><creator>Theisen, Christopher S.</creator><creator>Brusés, Juan L.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20090301</creationdate><title>N-cadherin modulates voltage activated calcium influx via RhoA, p120-catenin, and myosin–actin interaction</title><author>Marrs, Glen S. ; Theisen, Christopher S. ; Brusés, Juan L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-58bbb4ce4fba6c07c5807bccd41eceb05ba02e37330121e180fcebd73fa42d563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Actins - genetics</topic><topic>Actins - metabolism</topic><topic>Animals</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>Calcium - metabolism</topic><topic>Catenins</topic><topic>Cell adhesion</topic><topic>Cell Adhesion Molecules - genetics</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cells, Cultured</topic><topic>Chickens</topic><topic>CHO Cells</topic><topic>Ciliary ganglion</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Cytoskeleton</topic><topic>Humans</topic><topic>Myosins - genetics</topic><topic>Myosins - metabolism</topic><topic>N-cadherin</topic><topic>Neural development</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>p120-catenin</topic><topic>Patch-Clamp Techniques</topic><topic>Phosphoproteins - genetics</topic><topic>Phosphoproteins - metabolism</topic><topic>rhoA GTP-Binding Protein - genetics</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>RhoA GTPase</topic><topic>Voltage activated calcium currents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marrs, Glen S.</creatorcontrib><creatorcontrib>Theisen, Christopher S.</creatorcontrib><creatorcontrib>Brusés, Juan L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular and cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marrs, Glen S.</au><au>Theisen, Christopher S.</au><au>Brusés, Juan L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N-cadherin modulates voltage activated calcium influx via RhoA, p120-catenin, and myosin–actin interaction</atitle><jtitle>Molecular and cellular neuroscience</jtitle><addtitle>Mol Cell Neurosci</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>40</volume><issue>3</issue><spage>390</spage><epage>400</epage><pages>390-400</pages><issn>1044-7431</issn><eissn>1095-9327</eissn><abstract>N-cadherin is a transmembrane adhesion receptor that contributes to neuronal development and synapse formation through homophilic interactions that provide structural-adhesive support to contacts between cell membranes. In addition, N-cadherin homotypic binding may initiate cell signaling that regulates neuronal physiology. In this study, we investigated signaling capabilities of N-cadherin that control voltage activated calcium influx. Using whole-cell voltage clamp recording of isolated inward calcium currents in freshly isolated chick ciliary ganglion neurons we show that the juxtamembrane region of N-cadherin cytoplasmic domain regulates high-threshold voltage activated calcium currents by interacting with p120-catenin and activating RhoA. This regulatory mechanism requires myosin interaction with actin. Furthermore, N-cadherin homophilic binding enhanced voltage activated calcium current amplitude in dissociated neurons that have already developed mature synaptic contacts
in vivo. The increase in calcium current amplitude was not affected by brefeldin A suggesting that the effect is caused via direct channel modulation and not by increasing channel expression. In contrast, homotypic N-cadherin interaction failed to regulate calcium influx in freshly isolated immature neurons. However, RhoA inhibitors enhanced calcium current amplitude in these immature neurons, suggesting that the inhibitory effect of RhoA on calcium entry is regulated during neuronal development and synapse maturation. These results indicate that N-cadherin modulates voltage activated calcium entry by a mechanism that involves RhoA activity and its downstream effects on the cytoskeleton, and suggest that N-cadherin provides support for synaptic maturation and sustained synaptic activity by facilitating voltage activated calcium influx.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19162191</pmid><doi>10.1016/j.mcn.2008.12.007</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-7431 |
ispartof | Molecular and cellular neuroscience, 2009-03, Vol.40 (3), p.390-400 |
issn | 1044-7431 1095-9327 |
language | eng |
recordid | cdi_proquest_miscellaneous_66950240 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Actins - genetics Actins - metabolism Animals Cadherins - genetics Cadherins - metabolism Calcium - metabolism Catenins Cell adhesion Cell Adhesion Molecules - genetics Cell Adhesion Molecules - metabolism Cells, Cultured Chickens CHO Cells Ciliary ganglion Cricetinae Cricetulus Cytoskeletal Proteins - genetics Cytoskeletal Proteins - metabolism Cytoskeleton Humans Myosins - genetics Myosins - metabolism N-cadherin Neural development Neurons - cytology Neurons - metabolism p120-catenin Patch-Clamp Techniques Phosphoproteins - genetics Phosphoproteins - metabolism rhoA GTP-Binding Protein - genetics rhoA GTP-Binding Protein - metabolism RhoA GTPase Voltage activated calcium currents |
title | N-cadherin modulates voltage activated calcium influx via RhoA, p120-catenin, and myosin–actin interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A25%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N-cadherin%20modulates%20voltage%20activated%20calcium%20influx%20via%20RhoA,%20p120-catenin,%20and%20myosin%E2%80%93actin%20interaction&rft.jtitle=Molecular%20and%20cellular%20neuroscience&rft.au=Marrs,%20Glen%20S.&rft.date=2009-03-01&rft.volume=40&rft.issue=3&rft.spage=390&rft.epage=400&rft.pages=390-400&rft.issn=1044-7431&rft.eissn=1095-9327&rft_id=info:doi/10.1016/j.mcn.2008.12.007&rft_dat=%3Cproquest_cross%3E20358246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20358246&rft_id=info:pmid/19162191&rft_els_id=S1044743108003151&rfr_iscdi=true |