N-cadherin modulates voltage activated calcium influx via RhoA, p120-catenin, and myosin–actin interaction

N-cadherin is a transmembrane adhesion receptor that contributes to neuronal development and synapse formation through homophilic interactions that provide structural-adhesive support to contacts between cell membranes. In addition, N-cadherin homotypic binding may initiate cell signaling that regul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular neuroscience 2009-03, Vol.40 (3), p.390-400
Hauptverfasser: Marrs, Glen S., Theisen, Christopher S., Brusés, Juan L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 400
container_issue 3
container_start_page 390
container_title Molecular and cellular neuroscience
container_volume 40
creator Marrs, Glen S.
Theisen, Christopher S.
Brusés, Juan L.
description N-cadherin is a transmembrane adhesion receptor that contributes to neuronal development and synapse formation through homophilic interactions that provide structural-adhesive support to contacts between cell membranes. In addition, N-cadherin homotypic binding may initiate cell signaling that regulates neuronal physiology. In this study, we investigated signaling capabilities of N-cadherin that control voltage activated calcium influx. Using whole-cell voltage clamp recording of isolated inward calcium currents in freshly isolated chick ciliary ganglion neurons we show that the juxtamembrane region of N-cadherin cytoplasmic domain regulates high-threshold voltage activated calcium currents by interacting with p120-catenin and activating RhoA. This regulatory mechanism requires myosin interaction with actin. Furthermore, N-cadherin homophilic binding enhanced voltage activated calcium current amplitude in dissociated neurons that have already developed mature synaptic contacts in vivo. The increase in calcium current amplitude was not affected by brefeldin A suggesting that the effect is caused via direct channel modulation and not by increasing channel expression. In contrast, homotypic N-cadherin interaction failed to regulate calcium influx in freshly isolated immature neurons. However, RhoA inhibitors enhanced calcium current amplitude in these immature neurons, suggesting that the inhibitory effect of RhoA on calcium entry is regulated during neuronal development and synapse maturation. These results indicate that N-cadherin modulates voltage activated calcium entry by a mechanism that involves RhoA activity and its downstream effects on the cytoskeleton, and suggest that N-cadherin provides support for synaptic maturation and sustained synaptic activity by facilitating voltage activated calcium influx.
doi_str_mv 10.1016/j.mcn.2008.12.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66950240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044743108003151</els_id><sourcerecordid>20358246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-58bbb4ce4fba6c07c5807bccd41eceb05ba02e37330121e180fcebd73fa42d563</originalsourceid><addsrcrecordid>eNqFkc1u1TAQhS0Eoj_wAGyQV6yaMP7Jn7qqKmgrVSChdm059oT6KrFv7eSK7ngH3pAnwdG9Ert2MzManfMtziHkA4OSAas_b8rJ-JIDtCXjJUDzihwz6KqiE7x5vd5SFo0U7IicpLQBgIp34i05Yh2reR7HZPxWGG0fMDpPp2CXUc-Y6C6Ms_6JVJvZ7fLHUqNH45aJOj-Myy-6c5r-eAgXZ3TLOGTEjN75M6q9pdNTSM7__f1ndfvsmDGuZ_DvyJtBjwnfH_Ypuf_65e7yurj9fnVzeXFbGNmxuajavu-lQTn0ujbQmKqFpjfGSoYGe6h6DRxFIwQwzpC1MOS3bcSgJbdVLU7Jpz13G8PjgmlWk0sGx1F7DEtSdd1VwCW8KOQgqpbLlcj2QhNDShEHtY1u0vFJMVBrF2qjchdq7UIxrnIX2fPxAF_6Ce1_xyH8LDjfCzBnsXMYVTIOvUHrIppZ2eCewf8DcAGb6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20358246</pqid></control><display><type>article</type><title>N-cadherin modulates voltage activated calcium influx via RhoA, p120-catenin, and myosin–actin interaction</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Marrs, Glen S. ; Theisen, Christopher S. ; Brusés, Juan L.</creator><creatorcontrib>Marrs, Glen S. ; Theisen, Christopher S. ; Brusés, Juan L.</creatorcontrib><description>N-cadherin is a transmembrane adhesion receptor that contributes to neuronal development and synapse formation through homophilic interactions that provide structural-adhesive support to contacts between cell membranes. In addition, N-cadherin homotypic binding may initiate cell signaling that regulates neuronal physiology. In this study, we investigated signaling capabilities of N-cadherin that control voltage activated calcium influx. Using whole-cell voltage clamp recording of isolated inward calcium currents in freshly isolated chick ciliary ganglion neurons we show that the juxtamembrane region of N-cadherin cytoplasmic domain regulates high-threshold voltage activated calcium currents by interacting with p120-catenin and activating RhoA. This regulatory mechanism requires myosin interaction with actin. Furthermore, N-cadherin homophilic binding enhanced voltage activated calcium current amplitude in dissociated neurons that have already developed mature synaptic contacts in vivo. The increase in calcium current amplitude was not affected by brefeldin A suggesting that the effect is caused via direct channel modulation and not by increasing channel expression. In contrast, homotypic N-cadherin interaction failed to regulate calcium influx in freshly isolated immature neurons. However, RhoA inhibitors enhanced calcium current amplitude in these immature neurons, suggesting that the inhibitory effect of RhoA on calcium entry is regulated during neuronal development and synapse maturation. These results indicate that N-cadherin modulates voltage activated calcium entry by a mechanism that involves RhoA activity and its downstream effects on the cytoskeleton, and suggest that N-cadherin provides support for synaptic maturation and sustained synaptic activity by facilitating voltage activated calcium influx.</description><identifier>ISSN: 1044-7431</identifier><identifier>EISSN: 1095-9327</identifier><identifier>DOI: 10.1016/j.mcn.2008.12.007</identifier><identifier>PMID: 19162191</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actins - genetics ; Actins - metabolism ; Animals ; Cadherins - genetics ; Cadherins - metabolism ; Calcium - metabolism ; Catenins ; Cell adhesion ; Cell Adhesion Molecules - genetics ; Cell Adhesion Molecules - metabolism ; Cells, Cultured ; Chickens ; CHO Cells ; Ciliary ganglion ; Cricetinae ; Cricetulus ; Cytoskeletal Proteins - genetics ; Cytoskeletal Proteins - metabolism ; Cytoskeleton ; Humans ; Myosins - genetics ; Myosins - metabolism ; N-cadherin ; Neural development ; Neurons - cytology ; Neurons - metabolism ; p120-catenin ; Patch-Clamp Techniques ; Phosphoproteins - genetics ; Phosphoproteins - metabolism ; rhoA GTP-Binding Protein - genetics ; rhoA GTP-Binding Protein - metabolism ; RhoA GTPase ; Voltage activated calcium currents</subject><ispartof>Molecular and cellular neuroscience, 2009-03, Vol.40 (3), p.390-400</ispartof><rights>2008 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-58bbb4ce4fba6c07c5807bccd41eceb05ba02e37330121e180fcebd73fa42d563</citedby><cites>FETCH-LOGICAL-c491t-58bbb4ce4fba6c07c5807bccd41eceb05ba02e37330121e180fcebd73fa42d563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1044743108003151$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19162191$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marrs, Glen S.</creatorcontrib><creatorcontrib>Theisen, Christopher S.</creatorcontrib><creatorcontrib>Brusés, Juan L.</creatorcontrib><title>N-cadherin modulates voltage activated calcium influx via RhoA, p120-catenin, and myosin–actin interaction</title><title>Molecular and cellular neuroscience</title><addtitle>Mol Cell Neurosci</addtitle><description>N-cadherin is a transmembrane adhesion receptor that contributes to neuronal development and synapse formation through homophilic interactions that provide structural-adhesive support to contacts between cell membranes. In addition, N-cadherin homotypic binding may initiate cell signaling that regulates neuronal physiology. In this study, we investigated signaling capabilities of N-cadherin that control voltage activated calcium influx. Using whole-cell voltage clamp recording of isolated inward calcium currents in freshly isolated chick ciliary ganglion neurons we show that the juxtamembrane region of N-cadherin cytoplasmic domain regulates high-threshold voltage activated calcium currents by interacting with p120-catenin and activating RhoA. This regulatory mechanism requires myosin interaction with actin. Furthermore, N-cadherin homophilic binding enhanced voltage activated calcium current amplitude in dissociated neurons that have already developed mature synaptic contacts in vivo. The increase in calcium current amplitude was not affected by brefeldin A suggesting that the effect is caused via direct channel modulation and not by increasing channel expression. In contrast, homotypic N-cadherin interaction failed to regulate calcium influx in freshly isolated immature neurons. However, RhoA inhibitors enhanced calcium current amplitude in these immature neurons, suggesting that the inhibitory effect of RhoA on calcium entry is regulated during neuronal development and synapse maturation. These results indicate that N-cadherin modulates voltage activated calcium entry by a mechanism that involves RhoA activity and its downstream effects on the cytoskeleton, and suggest that N-cadherin provides support for synaptic maturation and sustained synaptic activity by facilitating voltage activated calcium influx.</description><subject>Actins - genetics</subject><subject>Actins - metabolism</subject><subject>Animals</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>Calcium - metabolism</subject><subject>Catenins</subject><subject>Cell adhesion</subject><subject>Cell Adhesion Molecules - genetics</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cells, Cultured</subject><subject>Chickens</subject><subject>CHO Cells</subject><subject>Ciliary ganglion</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Cytoskeleton</subject><subject>Humans</subject><subject>Myosins - genetics</subject><subject>Myosins - metabolism</subject><subject>N-cadherin</subject><subject>Neural development</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>p120-catenin</subject><subject>Patch-Clamp Techniques</subject><subject>Phosphoproteins - genetics</subject><subject>Phosphoproteins - metabolism</subject><subject>rhoA GTP-Binding Protein - genetics</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>RhoA GTPase</subject><subject>Voltage activated calcium currents</subject><issn>1044-7431</issn><issn>1095-9327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1TAQhS0Eoj_wAGyQV6yaMP7Jn7qqKmgrVSChdm059oT6KrFv7eSK7ngH3pAnwdG9Ert2MzManfMtziHkA4OSAas_b8rJ-JIDtCXjJUDzihwz6KqiE7x5vd5SFo0U7IicpLQBgIp34i05Yh2reR7HZPxWGG0fMDpPp2CXUc-Y6C6Ms_6JVJvZ7fLHUqNH45aJOj-Myy-6c5r-eAgXZ3TLOGTEjN75M6q9pdNTSM7__f1ndfvsmDGuZ_DvyJtBjwnfH_Ypuf_65e7yurj9fnVzeXFbGNmxuajavu-lQTn0ujbQmKqFpjfGSoYGe6h6DRxFIwQwzpC1MOS3bcSgJbdVLU7Jpz13G8PjgmlWk0sGx1F7DEtSdd1VwCW8KOQgqpbLlcj2QhNDShEHtY1u0vFJMVBrF2qjchdq7UIxrnIX2fPxAF_6Ce1_xyH8LDjfCzBnsXMYVTIOvUHrIppZ2eCewf8DcAGb6A</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Marrs, Glen S.</creator><creator>Theisen, Christopher S.</creator><creator>Brusés, Juan L.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20090301</creationdate><title>N-cadherin modulates voltage activated calcium influx via RhoA, p120-catenin, and myosin–actin interaction</title><author>Marrs, Glen S. ; Theisen, Christopher S. ; Brusés, Juan L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-58bbb4ce4fba6c07c5807bccd41eceb05ba02e37330121e180fcebd73fa42d563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Actins - genetics</topic><topic>Actins - metabolism</topic><topic>Animals</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>Calcium - metabolism</topic><topic>Catenins</topic><topic>Cell adhesion</topic><topic>Cell Adhesion Molecules - genetics</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cells, Cultured</topic><topic>Chickens</topic><topic>CHO Cells</topic><topic>Ciliary ganglion</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Cytoskeleton</topic><topic>Humans</topic><topic>Myosins - genetics</topic><topic>Myosins - metabolism</topic><topic>N-cadherin</topic><topic>Neural development</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>p120-catenin</topic><topic>Patch-Clamp Techniques</topic><topic>Phosphoproteins - genetics</topic><topic>Phosphoproteins - metabolism</topic><topic>rhoA GTP-Binding Protein - genetics</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>RhoA GTPase</topic><topic>Voltage activated calcium currents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marrs, Glen S.</creatorcontrib><creatorcontrib>Theisen, Christopher S.</creatorcontrib><creatorcontrib>Brusés, Juan L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular and cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marrs, Glen S.</au><au>Theisen, Christopher S.</au><au>Brusés, Juan L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N-cadherin modulates voltage activated calcium influx via RhoA, p120-catenin, and myosin–actin interaction</atitle><jtitle>Molecular and cellular neuroscience</jtitle><addtitle>Mol Cell Neurosci</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>40</volume><issue>3</issue><spage>390</spage><epage>400</epage><pages>390-400</pages><issn>1044-7431</issn><eissn>1095-9327</eissn><abstract>N-cadherin is a transmembrane adhesion receptor that contributes to neuronal development and synapse formation through homophilic interactions that provide structural-adhesive support to contacts between cell membranes. In addition, N-cadherin homotypic binding may initiate cell signaling that regulates neuronal physiology. In this study, we investigated signaling capabilities of N-cadherin that control voltage activated calcium influx. Using whole-cell voltage clamp recording of isolated inward calcium currents in freshly isolated chick ciliary ganglion neurons we show that the juxtamembrane region of N-cadherin cytoplasmic domain regulates high-threshold voltage activated calcium currents by interacting with p120-catenin and activating RhoA. This regulatory mechanism requires myosin interaction with actin. Furthermore, N-cadherin homophilic binding enhanced voltage activated calcium current amplitude in dissociated neurons that have already developed mature synaptic contacts in vivo. The increase in calcium current amplitude was not affected by brefeldin A suggesting that the effect is caused via direct channel modulation and not by increasing channel expression. In contrast, homotypic N-cadherin interaction failed to regulate calcium influx in freshly isolated immature neurons. However, RhoA inhibitors enhanced calcium current amplitude in these immature neurons, suggesting that the inhibitory effect of RhoA on calcium entry is regulated during neuronal development and synapse maturation. These results indicate that N-cadherin modulates voltage activated calcium entry by a mechanism that involves RhoA activity and its downstream effects on the cytoskeleton, and suggest that N-cadherin provides support for synaptic maturation and sustained synaptic activity by facilitating voltage activated calcium influx.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19162191</pmid><doi>10.1016/j.mcn.2008.12.007</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1044-7431
ispartof Molecular and cellular neuroscience, 2009-03, Vol.40 (3), p.390-400
issn 1044-7431
1095-9327
language eng
recordid cdi_proquest_miscellaneous_66950240
source MEDLINE; Elsevier ScienceDirect Journals
subjects Actins - genetics
Actins - metabolism
Animals
Cadherins - genetics
Cadherins - metabolism
Calcium - metabolism
Catenins
Cell adhesion
Cell Adhesion Molecules - genetics
Cell Adhesion Molecules - metabolism
Cells, Cultured
Chickens
CHO Cells
Ciliary ganglion
Cricetinae
Cricetulus
Cytoskeletal Proteins - genetics
Cytoskeletal Proteins - metabolism
Cytoskeleton
Humans
Myosins - genetics
Myosins - metabolism
N-cadherin
Neural development
Neurons - cytology
Neurons - metabolism
p120-catenin
Patch-Clamp Techniques
Phosphoproteins - genetics
Phosphoproteins - metabolism
rhoA GTP-Binding Protein - genetics
rhoA GTP-Binding Protein - metabolism
RhoA GTPase
Voltage activated calcium currents
title N-cadherin modulates voltage activated calcium influx via RhoA, p120-catenin, and myosin–actin interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A25%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N-cadherin%20modulates%20voltage%20activated%20calcium%20influx%20via%20RhoA,%20p120-catenin,%20and%20myosin%E2%80%93actin%20interaction&rft.jtitle=Molecular%20and%20cellular%20neuroscience&rft.au=Marrs,%20Glen%20S.&rft.date=2009-03-01&rft.volume=40&rft.issue=3&rft.spage=390&rft.epage=400&rft.pages=390-400&rft.issn=1044-7431&rft.eissn=1095-9327&rft_id=info:doi/10.1016/j.mcn.2008.12.007&rft_dat=%3Cproquest_cross%3E20358246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20358246&rft_id=info:pmid/19162191&rft_els_id=S1044743108003151&rfr_iscdi=true