A unified approach to burst properties of multiconductance single ion channels

Patch clamp recordings from ion channels often show bursting behaviour, that is periods of repetitive activity, which are noticeably separated from each other by periods of inactivity. In this paper, bursting behaviour is considered for a general finite state space continuous‐time Markov chain model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical medicine and biology 2004-09, Vol.21 (3), p.205-245
Hauptverfasser: Ball, Frank G., Milne, Robin K., Yeo, Geoffrey F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245
container_issue 3
container_start_page 205
container_title Mathematical medicine and biology
container_volume 21
creator Ball, Frank G.
Milne, Robin K.
Yeo, Geoffrey F.
description Patch clamp recordings from ion channels often show bursting behaviour, that is periods of repetitive activity, which are noticeably separated from each other by periods of inactivity. In this paper, bursting behaviour is considered for a general finite state space continuous‐time Markov chain model of channel gating, allowing for one or more non‐zero conductance levels. A unified semi‐Markov framework, that encompasses both theoretical and empirical bursts, is described for analysing a broad range of properties of bursts, including the total charge transfer, the number of sojourns at distinct conductance levels and the number of openings in a burst, with the results presented when the channel is in equilibrium. When the gating mechanism is time reversible, it is shown that the distribution and autocorrelation function of each of the above properties are necessarily finite linear combinations of exponentially or geometrically decaying components with non‐negative coefficients. Three methods for choosing a critical time for empirical bursts are investigated. The theory is illustrated by numerical examples from ryanodine, chloride and nicotinic acetylcholine receptor channels, demonstrating the power and flexibility of the methodology, and permitting comparison between the methods for choosing the critical time.
doi_str_mv 10.1093/imammb/21.3.205
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66949008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66949008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-9e2f140575fc1eb9e8203892c98a3a283de14fe72254d8a2a7a6275c4f687bdf3</originalsourceid><addsrcrecordid>eNpdkE1r3DAQhkVISNI0596KyKE37-rDsqTjsqTZwtJQSKDkImR51Ci15Y1kQ_Lvq7DbBnqaGeaZ4eVB6BMlC0o0X4bBDkO7ZHTBF4yII3ROaykr1RB2_LcXWp-hDzk_EcI4bdQpOqOilpTVzTn6vsJzDD5Ah-1ul0brHvE04nZOecJl3kGaAmQ8ejzM_RTcGLvZTTY6wDnEXz3gMEbsHm2M0OeP6MTbPsPloV6g-6_Xd-tNtb29-bZebSvHhZoqDczTmggpvKPQalCMcKWZ08pyyxTvgNYeJGOi7pRlVtqGSeFq3yjZdp5foC_7vyXi8wx5MkPIDvreRhjnbJpG15oQVcCr_8CncU6xZDOMMk205rRAyz3k0phzAm92qZhNr4YS8-bZ7D2XE8NN8VwuPh_ezu0A3Tt_EFuAag-EPMHLv71Nv00juRRm8_PBkI3U2x-aGsX_ADPLiPY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212909931</pqid></control><display><type>article</type><title>A unified approach to burst properties of multiconductance single ion channels</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Ball, Frank G. ; Milne, Robin K. ; Yeo, Geoffrey F.</creator><creatorcontrib>Ball, Frank G. ; Milne, Robin K. ; Yeo, Geoffrey F.</creatorcontrib><description>Patch clamp recordings from ion channels often show bursting behaviour, that is periods of repetitive activity, which are noticeably separated from each other by periods of inactivity. In this paper, bursting behaviour is considered for a general finite state space continuous‐time Markov chain model of channel gating, allowing for one or more non‐zero conductance levels. A unified semi‐Markov framework, that encompasses both theoretical and empirical bursts, is described for analysing a broad range of properties of bursts, including the total charge transfer, the number of sojourns at distinct conductance levels and the number of openings in a burst, with the results presented when the channel is in equilibrium. When the gating mechanism is time reversible, it is shown that the distribution and autocorrelation function of each of the above properties are necessarily finite linear combinations of exponentially or geometrically decaying components with non‐negative coefficients. Three methods for choosing a critical time for empirical bursts are investigated. The theory is illustrated by numerical examples from ryanodine, chloride and nicotinic acetylcholine receptor channels, demonstrating the power and flexibility of the methodology, and permitting comparison between the methods for choosing the critical time.</description><identifier>ISSN: 1477-8599</identifier><identifier>EISSN: 1477-8602</identifier><identifier>DOI: 10.1093/imammb/21.3.205</identifier><identifier>PMID: 15471246</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>bursts ; charge transfer ; Electrophysiology ; equilibrium behaviour ; Ion Channel Gating - physiology ; ion channel modelling ; Ion Channels - physiology ; Markov Chains ; Membrane Potentials - physiology ; Models, Biological ; multiple conductance levels ; reversibility ; semi‐Markov structure</subject><ispartof>Mathematical medicine and biology, 2004-09, Vol.21 (3), p.205-245</ispartof><rights>Copyright Oxford University Press(England) Sep 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-9e2f140575fc1eb9e8203892c98a3a283de14fe72254d8a2a7a6275c4f687bdf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15471246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ball, Frank G.</creatorcontrib><creatorcontrib>Milne, Robin K.</creatorcontrib><creatorcontrib>Yeo, Geoffrey F.</creatorcontrib><title>A unified approach to burst properties of multiconductance single ion channels</title><title>Mathematical medicine and biology</title><addtitle>Math Med Biol</addtitle><description>Patch clamp recordings from ion channels often show bursting behaviour, that is periods of repetitive activity, which are noticeably separated from each other by periods of inactivity. In this paper, bursting behaviour is considered for a general finite state space continuous‐time Markov chain model of channel gating, allowing for one or more non‐zero conductance levels. A unified semi‐Markov framework, that encompasses both theoretical and empirical bursts, is described for analysing a broad range of properties of bursts, including the total charge transfer, the number of sojourns at distinct conductance levels and the number of openings in a burst, with the results presented when the channel is in equilibrium. When the gating mechanism is time reversible, it is shown that the distribution and autocorrelation function of each of the above properties are necessarily finite linear combinations of exponentially or geometrically decaying components with non‐negative coefficients. Three methods for choosing a critical time for empirical bursts are investigated. The theory is illustrated by numerical examples from ryanodine, chloride and nicotinic acetylcholine receptor channels, demonstrating the power and flexibility of the methodology, and permitting comparison between the methods for choosing the critical time.</description><subject>bursts</subject><subject>charge transfer</subject><subject>Electrophysiology</subject><subject>equilibrium behaviour</subject><subject>Ion Channel Gating - physiology</subject><subject>ion channel modelling</subject><subject>Ion Channels - physiology</subject><subject>Markov Chains</subject><subject>Membrane Potentials - physiology</subject><subject>Models, Biological</subject><subject>multiple conductance levels</subject><subject>reversibility</subject><subject>semi‐Markov structure</subject><issn>1477-8599</issn><issn>1477-8602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE1r3DAQhkVISNI0596KyKE37-rDsqTjsqTZwtJQSKDkImR51Ci15Y1kQ_Lvq7DbBnqaGeaZ4eVB6BMlC0o0X4bBDkO7ZHTBF4yII3ROaykr1RB2_LcXWp-hDzk_EcI4bdQpOqOilpTVzTn6vsJzDD5Ah-1ul0brHvE04nZOecJl3kGaAmQ8ejzM_RTcGLvZTTY6wDnEXz3gMEbsHm2M0OeP6MTbPsPloV6g-6_Xd-tNtb29-bZebSvHhZoqDczTmggpvKPQalCMcKWZ08pyyxTvgNYeJGOi7pRlVtqGSeFq3yjZdp5foC_7vyXi8wx5MkPIDvreRhjnbJpG15oQVcCr_8CncU6xZDOMMk205rRAyz3k0phzAm92qZhNr4YS8-bZ7D2XE8NN8VwuPh_ezu0A3Tt_EFuAag-EPMHLv71Nv00juRRm8_PBkI3U2x-aGsX_ADPLiPY</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Ball, Frank G.</creator><creator>Milne, Robin K.</creator><creator>Yeo, Geoffrey F.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20040901</creationdate><title>A unified approach to burst properties of multiconductance single ion channels</title><author>Ball, Frank G. ; Milne, Robin K. ; Yeo, Geoffrey F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-9e2f140575fc1eb9e8203892c98a3a283de14fe72254d8a2a7a6275c4f687bdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>bursts</topic><topic>charge transfer</topic><topic>Electrophysiology</topic><topic>equilibrium behaviour</topic><topic>Ion Channel Gating - physiology</topic><topic>ion channel modelling</topic><topic>Ion Channels - physiology</topic><topic>Markov Chains</topic><topic>Membrane Potentials - physiology</topic><topic>Models, Biological</topic><topic>multiple conductance levels</topic><topic>reversibility</topic><topic>semi‐Markov structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ball, Frank G.</creatorcontrib><creatorcontrib>Milne, Robin K.</creatorcontrib><creatorcontrib>Yeo, Geoffrey F.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Mathematical medicine and biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ball, Frank G.</au><au>Milne, Robin K.</au><au>Yeo, Geoffrey F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A unified approach to burst properties of multiconductance single ion channels</atitle><jtitle>Mathematical medicine and biology</jtitle><addtitle>Math Med Biol</addtitle><date>2004-09-01</date><risdate>2004</risdate><volume>21</volume><issue>3</issue><spage>205</spage><epage>245</epage><pages>205-245</pages><issn>1477-8599</issn><eissn>1477-8602</eissn><abstract>Patch clamp recordings from ion channels often show bursting behaviour, that is periods of repetitive activity, which are noticeably separated from each other by periods of inactivity. In this paper, bursting behaviour is considered for a general finite state space continuous‐time Markov chain model of channel gating, allowing for one or more non‐zero conductance levels. A unified semi‐Markov framework, that encompasses both theoretical and empirical bursts, is described for analysing a broad range of properties of bursts, including the total charge transfer, the number of sojourns at distinct conductance levels and the number of openings in a burst, with the results presented when the channel is in equilibrium. When the gating mechanism is time reversible, it is shown that the distribution and autocorrelation function of each of the above properties are necessarily finite linear combinations of exponentially or geometrically decaying components with non‐negative coefficients. Three methods for choosing a critical time for empirical bursts are investigated. The theory is illustrated by numerical examples from ryanodine, chloride and nicotinic acetylcholine receptor channels, demonstrating the power and flexibility of the methodology, and permitting comparison between the methods for choosing the critical time.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>15471246</pmid><doi>10.1093/imammb/21.3.205</doi><tpages>41</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1477-8599
ispartof Mathematical medicine and biology, 2004-09, Vol.21 (3), p.205-245
issn 1477-8599
1477-8602
language eng
recordid cdi_proquest_miscellaneous_66949008
source MEDLINE; Oxford University Press Journals All Titles (1996-Current)
subjects bursts
charge transfer
Electrophysiology
equilibrium behaviour
Ion Channel Gating - physiology
ion channel modelling
Ion Channels - physiology
Markov Chains
Membrane Potentials - physiology
Models, Biological
multiple conductance levels
reversibility
semi‐Markov structure
title A unified approach to burst properties of multiconductance single ion channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20unified%20approach%20to%20burst%20properties%20of%20multiconductance%20single%20ion%20channels&rft.jtitle=Mathematical%20medicine%20and%20biology&rft.au=Ball,%20Frank%20G.&rft.date=2004-09-01&rft.volume=21&rft.issue=3&rft.spage=205&rft.epage=245&rft.pages=205-245&rft.issn=1477-8599&rft.eissn=1477-8602&rft_id=info:doi/10.1093/imammb/21.3.205&rft_dat=%3Cproquest_cross%3E66949008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212909931&rft_id=info:pmid/15471246&rfr_iscdi=true