An atomic resolution structure for human fibroblast growth factor 1
A 1.10‐Å atomic resolution X‐ray structure of human fibroblast growth factor 1 (FGF‐1), a member of the β‐trefoil superfold, has been determined. The β‐trefoil is one of 10 fundamental protein superfolds and is the only superfold to exhibit 3‐fold structural symmetry (comprising 3 “trefoil” units)....
Gespeichert in:
Veröffentlicht in: | Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2004-11, Vol.57 (3), p.626-634 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 634 |
---|---|
container_issue | 3 |
container_start_page | 626 |
container_title | Proteins, structure, function, and bioinformatics |
container_volume | 57 |
creator | Bernett, Matthew J. Somasundaram, Thayumanasamy Blaber, Michael |
description | A 1.10‐Å atomic resolution X‐ray structure of human fibroblast growth factor 1 (FGF‐1), a member of the β‐trefoil superfold, has been determined. The β‐trefoil is one of 10 fundamental protein superfolds and is the only superfold to exhibit 3‐fold structural symmetry (comprising 3 “trefoil” units). The quality of the diffraction data permits unambiguous assignment of Asn, Gln, and His rotamers, Pro ring pucker, as well as refinement of atomic anisotropic displacement parameters (ADPs). The FGF‐1 structure exhibits numerous core‐packing defects, detectable using a 1.0‐Å probe radius. In addition to contributing to the relatively low thermal stability of FGF‐1, these defects may also permit domain motions within the structure. The availability of refined ADPs allows a translation/libration/screw (TLS) analysis of putative rigid body domains. The TLS analysis shows that β‐strands 6–12 together form a rigid body, and there is a clear demarcation in TLS motions between the adjacent carboxyl‐ and amino‐termini. Although separate from β‐strands 6–12, the individual β‐strands 1–5 do not exhibit correlated motions; thus, this region appears to be comparatively flexible. The heparin‐binding contacts of FGF‐1 are located within β‐strands 6–12; conversely, a significant portion of the receptor‐binding contacts are located within β‐strands 1–5. Thus, the observed rigid body motion in FGF‐1 appears related to the ligand‐binding functionalities. Proteins 2004. © 2004 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/prot.20239 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66946192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66946192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3639-470b3dd29b2f5e72824cdedb098b951429fb47f4bdd494c478468390d23fdd7b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EglJY-AEoEwNSwF-J7bGqoCABRaiAxGLFsU0DSV1sR4V_TyAFNqYb7t2T7gFwgOAJghCfLr2LJxhiIjbAAEHBUogI3QQDyDlLScazHbAbwguEMBck3wY7KCMcYywGYDxaJEV0TVUm3gRXt7FyiyRE35ax9SaxzifztikWia2Ud6ouQkyevVvFeWKLMnZrtAe2bFEHs7-eQ3B_fjYbX6RX08nleHSVliQnIqUMKqI1FgrbzDDMMS210QoKrkSGKBZWUWap0poKWlLGac6JgBoTqzVTZAiOem_38FtrQpRNFUpT18XCuDbIPBc0RwJ34HEPlt6F4I2VS181hf-QCMqvZPIrmfxO1sGHa2urGqP_0HWjDkA9sKpq8_GPSt7eTWc_0rS_qUI07783hX-VOSMsk483E3n9RO-eHi5mkpBPzOmGOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66946192</pqid></control><display><type>article</type><title>An atomic resolution structure for human fibroblast growth factor 1</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Bernett, Matthew J. ; Somasundaram, Thayumanasamy ; Blaber, Michael</creator><creatorcontrib>Bernett, Matthew J. ; Somasundaram, Thayumanasamy ; Blaber, Michael</creatorcontrib><description>A 1.10‐Å atomic resolution X‐ray structure of human fibroblast growth factor 1 (FGF‐1), a member of the β‐trefoil superfold, has been determined. The β‐trefoil is one of 10 fundamental protein superfolds and is the only superfold to exhibit 3‐fold structural symmetry (comprising 3 “trefoil” units). The quality of the diffraction data permits unambiguous assignment of Asn, Gln, and His rotamers, Pro ring pucker, as well as refinement of atomic anisotropic displacement parameters (ADPs). The FGF‐1 structure exhibits numerous core‐packing defects, detectable using a 1.0‐Å probe radius. In addition to contributing to the relatively low thermal stability of FGF‐1, these defects may also permit domain motions within the structure. The availability of refined ADPs allows a translation/libration/screw (TLS) analysis of putative rigid body domains. The TLS analysis shows that β‐strands 6–12 together form a rigid body, and there is a clear demarcation in TLS motions between the adjacent carboxyl‐ and amino‐termini. Although separate from β‐strands 6–12, the individual β‐strands 1–5 do not exhibit correlated motions; thus, this region appears to be comparatively flexible. The heparin‐binding contacts of FGF‐1 are located within β‐strands 6–12; conversely, a significant portion of the receptor‐binding contacts are located within β‐strands 1–5. Thus, the observed rigid body motion in FGF‐1 appears related to the ligand‐binding functionalities. Proteins 2004. © 2004 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.20239</identifier><identifier>PMID: 15382229</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>anisotropic displacement parameters ; Anisotropy ; atomic-resolution ; Crystallography, X-Ray ; fibroblast growth factor ; Fibroblast Growth Factor 1 - chemistry ; Fibroblast Growth Factor 1 - metabolism ; Heparin - chemistry ; Heparin - metabolism ; Humans ; Ligands ; Models, Molecular ; Motion ; Pliability ; protein dynamics ; Protein Structure, Secondary ; Receptors, Fibroblast Growth Factor - chemistry ; Receptors, Fibroblast Growth Factor - metabolism ; Solvents - chemistry ; Solvents - metabolism ; Thermodynamics ; translation/libration/screw tensors ; X-ray crystallography ; β-trefoil</subject><ispartof>Proteins, structure, function, and bioinformatics, 2004-11, Vol.57 (3), p.626-634</ispartof><rights>Copyright © 2004 Wiley‐Liss, Inc.</rights><rights>(c) 2004 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3639-470b3dd29b2f5e72824cdedb098b951429fb47f4bdd494c478468390d23fdd7b3</citedby><cites>FETCH-LOGICAL-c3639-470b3dd29b2f5e72824cdedb098b951429fb47f4bdd494c478468390d23fdd7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.20239$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.20239$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15382229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bernett, Matthew J.</creatorcontrib><creatorcontrib>Somasundaram, Thayumanasamy</creatorcontrib><creatorcontrib>Blaber, Michael</creatorcontrib><title>An atomic resolution structure for human fibroblast growth factor 1</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>A 1.10‐Å atomic resolution X‐ray structure of human fibroblast growth factor 1 (FGF‐1), a member of the β‐trefoil superfold, has been determined. The β‐trefoil is one of 10 fundamental protein superfolds and is the only superfold to exhibit 3‐fold structural symmetry (comprising 3 “trefoil” units). The quality of the diffraction data permits unambiguous assignment of Asn, Gln, and His rotamers, Pro ring pucker, as well as refinement of atomic anisotropic displacement parameters (ADPs). The FGF‐1 structure exhibits numerous core‐packing defects, detectable using a 1.0‐Å probe radius. In addition to contributing to the relatively low thermal stability of FGF‐1, these defects may also permit domain motions within the structure. The availability of refined ADPs allows a translation/libration/screw (TLS) analysis of putative rigid body domains. The TLS analysis shows that β‐strands 6–12 together form a rigid body, and there is a clear demarcation in TLS motions between the adjacent carboxyl‐ and amino‐termini. Although separate from β‐strands 6–12, the individual β‐strands 1–5 do not exhibit correlated motions; thus, this region appears to be comparatively flexible. The heparin‐binding contacts of FGF‐1 are located within β‐strands 6–12; conversely, a significant portion of the receptor‐binding contacts are located within β‐strands 1–5. Thus, the observed rigid body motion in FGF‐1 appears related to the ligand‐binding functionalities. Proteins 2004. © 2004 Wiley‐Liss, Inc.</description><subject>anisotropic displacement parameters</subject><subject>Anisotropy</subject><subject>atomic-resolution</subject><subject>Crystallography, X-Ray</subject><subject>fibroblast growth factor</subject><subject>Fibroblast Growth Factor 1 - chemistry</subject><subject>Fibroblast Growth Factor 1 - metabolism</subject><subject>Heparin - chemistry</subject><subject>Heparin - metabolism</subject><subject>Humans</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Motion</subject><subject>Pliability</subject><subject>protein dynamics</subject><subject>Protein Structure, Secondary</subject><subject>Receptors, Fibroblast Growth Factor - chemistry</subject><subject>Receptors, Fibroblast Growth Factor - metabolism</subject><subject>Solvents - chemistry</subject><subject>Solvents - metabolism</subject><subject>Thermodynamics</subject><subject>translation/libration/screw tensors</subject><subject>X-ray crystallography</subject><subject>β-trefoil</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQQC0EglJY-AEoEwNSwF-J7bGqoCABRaiAxGLFsU0DSV1sR4V_TyAFNqYb7t2T7gFwgOAJghCfLr2LJxhiIjbAAEHBUogI3QQDyDlLScazHbAbwguEMBck3wY7KCMcYywGYDxaJEV0TVUm3gRXt7FyiyRE35ax9SaxzifztikWia2Ud6ouQkyevVvFeWKLMnZrtAe2bFEHs7-eQ3B_fjYbX6RX08nleHSVliQnIqUMKqI1FgrbzDDMMS210QoKrkSGKBZWUWap0poKWlLGac6JgBoTqzVTZAiOem_38FtrQpRNFUpT18XCuDbIPBc0RwJ34HEPlt6F4I2VS181hf-QCMqvZPIrmfxO1sGHa2urGqP_0HWjDkA9sKpq8_GPSt7eTWc_0rS_qUI07783hX-VOSMsk483E3n9RO-eHi5mkpBPzOmGOg</recordid><startdate>20041115</startdate><enddate>20041115</enddate><creator>Bernett, Matthew J.</creator><creator>Somasundaram, Thayumanasamy</creator><creator>Blaber, Michael</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20041115</creationdate><title>An atomic resolution structure for human fibroblast growth factor 1</title><author>Bernett, Matthew J. ; Somasundaram, Thayumanasamy ; Blaber, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3639-470b3dd29b2f5e72824cdedb098b951429fb47f4bdd494c478468390d23fdd7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>anisotropic displacement parameters</topic><topic>Anisotropy</topic><topic>atomic-resolution</topic><topic>Crystallography, X-Ray</topic><topic>fibroblast growth factor</topic><topic>Fibroblast Growth Factor 1 - chemistry</topic><topic>Fibroblast Growth Factor 1 - metabolism</topic><topic>Heparin - chemistry</topic><topic>Heparin - metabolism</topic><topic>Humans</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Motion</topic><topic>Pliability</topic><topic>protein dynamics</topic><topic>Protein Structure, Secondary</topic><topic>Receptors, Fibroblast Growth Factor - chemistry</topic><topic>Receptors, Fibroblast Growth Factor - metabolism</topic><topic>Solvents - chemistry</topic><topic>Solvents - metabolism</topic><topic>Thermodynamics</topic><topic>translation/libration/screw tensors</topic><topic>X-ray crystallography</topic><topic>β-trefoil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernett, Matthew J.</creatorcontrib><creatorcontrib>Somasundaram, Thayumanasamy</creatorcontrib><creatorcontrib>Blaber, Michael</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernett, Matthew J.</au><au>Somasundaram, Thayumanasamy</au><au>Blaber, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An atomic resolution structure for human fibroblast growth factor 1</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2004-11-15</date><risdate>2004</risdate><volume>57</volume><issue>3</issue><spage>626</spage><epage>634</epage><pages>626-634</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>A 1.10‐Å atomic resolution X‐ray structure of human fibroblast growth factor 1 (FGF‐1), a member of the β‐trefoil superfold, has been determined. The β‐trefoil is one of 10 fundamental protein superfolds and is the only superfold to exhibit 3‐fold structural symmetry (comprising 3 “trefoil” units). The quality of the diffraction data permits unambiguous assignment of Asn, Gln, and His rotamers, Pro ring pucker, as well as refinement of atomic anisotropic displacement parameters (ADPs). The FGF‐1 structure exhibits numerous core‐packing defects, detectable using a 1.0‐Å probe radius. In addition to contributing to the relatively low thermal stability of FGF‐1, these defects may also permit domain motions within the structure. The availability of refined ADPs allows a translation/libration/screw (TLS) analysis of putative rigid body domains. The TLS analysis shows that β‐strands 6–12 together form a rigid body, and there is a clear demarcation in TLS motions between the adjacent carboxyl‐ and amino‐termini. Although separate from β‐strands 6–12, the individual β‐strands 1–5 do not exhibit correlated motions; thus, this region appears to be comparatively flexible. The heparin‐binding contacts of FGF‐1 are located within β‐strands 6–12; conversely, a significant portion of the receptor‐binding contacts are located within β‐strands 1–5. Thus, the observed rigid body motion in FGF‐1 appears related to the ligand‐binding functionalities. Proteins 2004. © 2004 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15382229</pmid><doi>10.1002/prot.20239</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-3585 |
ispartof | Proteins, structure, function, and bioinformatics, 2004-11, Vol.57 (3), p.626-634 |
issn | 0887-3585 1097-0134 |
language | eng |
recordid | cdi_proquest_miscellaneous_66946192 |
source | MEDLINE; Wiley Journals |
subjects | anisotropic displacement parameters Anisotropy atomic-resolution Crystallography, X-Ray fibroblast growth factor Fibroblast Growth Factor 1 - chemistry Fibroblast Growth Factor 1 - metabolism Heparin - chemistry Heparin - metabolism Humans Ligands Models, Molecular Motion Pliability protein dynamics Protein Structure, Secondary Receptors, Fibroblast Growth Factor - chemistry Receptors, Fibroblast Growth Factor - metabolism Solvents - chemistry Solvents - metabolism Thermodynamics translation/libration/screw tensors X-ray crystallography β-trefoil |
title | An atomic resolution structure for human fibroblast growth factor 1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A24%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20atomic%20resolution%20structure%20for%20human%20fibroblast%20growth%20factor%201&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Bernett,%20Matthew%20J.&rft.date=2004-11-15&rft.volume=57&rft.issue=3&rft.spage=626&rft.epage=634&rft.pages=626-634&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.20239&rft_dat=%3Cproquest_cross%3E66946192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66946192&rft_id=info:pmid/15382229&rfr_iscdi=true |