An atomic resolution structure for human fibroblast growth factor 1

A 1.10‐Å atomic resolution X‐ray structure of human fibroblast growth factor 1 (FGF‐1), a member of the β‐trefoil superfold, has been determined. The β‐trefoil is one of 10 fundamental protein superfolds and is the only superfold to exhibit 3‐fold structural symmetry (comprising 3 “trefoil” units)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2004-11, Vol.57 (3), p.626-634
Hauptverfasser: Bernett, Matthew J., Somasundaram, Thayumanasamy, Blaber, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 634
container_issue 3
container_start_page 626
container_title Proteins, structure, function, and bioinformatics
container_volume 57
creator Bernett, Matthew J.
Somasundaram, Thayumanasamy
Blaber, Michael
description A 1.10‐Å atomic resolution X‐ray structure of human fibroblast growth factor 1 (FGF‐1), a member of the β‐trefoil superfold, has been determined. The β‐trefoil is one of 10 fundamental protein superfolds and is the only superfold to exhibit 3‐fold structural symmetry (comprising 3 “trefoil” units). The quality of the diffraction data permits unambiguous assignment of Asn, Gln, and His rotamers, Pro ring pucker, as well as refinement of atomic anisotropic displacement parameters (ADPs). The FGF‐1 structure exhibits numerous core‐packing defects, detectable using a 1.0‐Å probe radius. In addition to contributing to the relatively low thermal stability of FGF‐1, these defects may also permit domain motions within the structure. The availability of refined ADPs allows a translation/libration/screw (TLS) analysis of putative rigid body domains. The TLS analysis shows that β‐strands 6–12 together form a rigid body, and there is a clear demarcation in TLS motions between the adjacent carboxyl‐ and amino‐termini. Although separate from β‐strands 6–12, the individual β‐strands 1–5 do not exhibit correlated motions; thus, this region appears to be comparatively flexible. The heparin‐binding contacts of FGF‐1 are located within β‐strands 6–12; conversely, a significant portion of the receptor‐binding contacts are located within β‐strands 1–5. Thus, the observed rigid body motion in FGF‐1 appears related to the ligand‐binding functionalities. Proteins 2004. © 2004 Wiley‐Liss, Inc.
doi_str_mv 10.1002/prot.20239
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66946192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66946192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3639-470b3dd29b2f5e72824cdedb098b951429fb47f4bdd494c478468390d23fdd7b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EglJY-AEoEwNSwF-J7bGqoCABRaiAxGLFsU0DSV1sR4V_TyAFNqYb7t2T7gFwgOAJghCfLr2LJxhiIjbAAEHBUogI3QQDyDlLScazHbAbwguEMBck3wY7KCMcYywGYDxaJEV0TVUm3gRXt7FyiyRE35ax9SaxzifztikWia2Ud6ouQkyevVvFeWKLMnZrtAe2bFEHs7-eQ3B_fjYbX6RX08nleHSVliQnIqUMKqI1FgrbzDDMMS210QoKrkSGKBZWUWap0poKWlLGac6JgBoTqzVTZAiOem_38FtrQpRNFUpT18XCuDbIPBc0RwJ34HEPlt6F4I2VS181hf-QCMqvZPIrmfxO1sGHa2urGqP_0HWjDkA9sKpq8_GPSt7eTWc_0rS_qUI07783hX-VOSMsk483E3n9RO-eHi5mkpBPzOmGOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66946192</pqid></control><display><type>article</type><title>An atomic resolution structure for human fibroblast growth factor 1</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Bernett, Matthew J. ; Somasundaram, Thayumanasamy ; Blaber, Michael</creator><creatorcontrib>Bernett, Matthew J. ; Somasundaram, Thayumanasamy ; Blaber, Michael</creatorcontrib><description>A 1.10‐Å atomic resolution X‐ray structure of human fibroblast growth factor 1 (FGF‐1), a member of the β‐trefoil superfold, has been determined. The β‐trefoil is one of 10 fundamental protein superfolds and is the only superfold to exhibit 3‐fold structural symmetry (comprising 3 “trefoil” units). The quality of the diffraction data permits unambiguous assignment of Asn, Gln, and His rotamers, Pro ring pucker, as well as refinement of atomic anisotropic displacement parameters (ADPs). The FGF‐1 structure exhibits numerous core‐packing defects, detectable using a 1.0‐Å probe radius. In addition to contributing to the relatively low thermal stability of FGF‐1, these defects may also permit domain motions within the structure. The availability of refined ADPs allows a translation/libration/screw (TLS) analysis of putative rigid body domains. The TLS analysis shows that β‐strands 6–12 together form a rigid body, and there is a clear demarcation in TLS motions between the adjacent carboxyl‐ and amino‐termini. Although separate from β‐strands 6–12, the individual β‐strands 1–5 do not exhibit correlated motions; thus, this region appears to be comparatively flexible. The heparin‐binding contacts of FGF‐1 are located within β‐strands 6–12; conversely, a significant portion of the receptor‐binding contacts are located within β‐strands 1–5. Thus, the observed rigid body motion in FGF‐1 appears related to the ligand‐binding functionalities. Proteins 2004. © 2004 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.20239</identifier><identifier>PMID: 15382229</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>anisotropic displacement parameters ; Anisotropy ; atomic-resolution ; Crystallography, X-Ray ; fibroblast growth factor ; Fibroblast Growth Factor 1 - chemistry ; Fibroblast Growth Factor 1 - metabolism ; Heparin - chemistry ; Heparin - metabolism ; Humans ; Ligands ; Models, Molecular ; Motion ; Pliability ; protein dynamics ; Protein Structure, Secondary ; Receptors, Fibroblast Growth Factor - chemistry ; Receptors, Fibroblast Growth Factor - metabolism ; Solvents - chemistry ; Solvents - metabolism ; Thermodynamics ; translation/libration/screw tensors ; X-ray crystallography ; β-trefoil</subject><ispartof>Proteins, structure, function, and bioinformatics, 2004-11, Vol.57 (3), p.626-634</ispartof><rights>Copyright © 2004 Wiley‐Liss, Inc.</rights><rights>(c) 2004 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3639-470b3dd29b2f5e72824cdedb098b951429fb47f4bdd494c478468390d23fdd7b3</citedby><cites>FETCH-LOGICAL-c3639-470b3dd29b2f5e72824cdedb098b951429fb47f4bdd494c478468390d23fdd7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.20239$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.20239$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15382229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bernett, Matthew J.</creatorcontrib><creatorcontrib>Somasundaram, Thayumanasamy</creatorcontrib><creatorcontrib>Blaber, Michael</creatorcontrib><title>An atomic resolution structure for human fibroblast growth factor 1</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>A 1.10‐Å atomic resolution X‐ray structure of human fibroblast growth factor 1 (FGF‐1), a member of the β‐trefoil superfold, has been determined. The β‐trefoil is one of 10 fundamental protein superfolds and is the only superfold to exhibit 3‐fold structural symmetry (comprising 3 “trefoil” units). The quality of the diffraction data permits unambiguous assignment of Asn, Gln, and His rotamers, Pro ring pucker, as well as refinement of atomic anisotropic displacement parameters (ADPs). The FGF‐1 structure exhibits numerous core‐packing defects, detectable using a 1.0‐Å probe radius. In addition to contributing to the relatively low thermal stability of FGF‐1, these defects may also permit domain motions within the structure. The availability of refined ADPs allows a translation/libration/screw (TLS) analysis of putative rigid body domains. The TLS analysis shows that β‐strands 6–12 together form a rigid body, and there is a clear demarcation in TLS motions between the adjacent carboxyl‐ and amino‐termini. Although separate from β‐strands 6–12, the individual β‐strands 1–5 do not exhibit correlated motions; thus, this region appears to be comparatively flexible. The heparin‐binding contacts of FGF‐1 are located within β‐strands 6–12; conversely, a significant portion of the receptor‐binding contacts are located within β‐strands 1–5. Thus, the observed rigid body motion in FGF‐1 appears related to the ligand‐binding functionalities. Proteins 2004. © 2004 Wiley‐Liss, Inc.</description><subject>anisotropic displacement parameters</subject><subject>Anisotropy</subject><subject>atomic-resolution</subject><subject>Crystallography, X-Ray</subject><subject>fibroblast growth factor</subject><subject>Fibroblast Growth Factor 1 - chemistry</subject><subject>Fibroblast Growth Factor 1 - metabolism</subject><subject>Heparin - chemistry</subject><subject>Heparin - metabolism</subject><subject>Humans</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Motion</subject><subject>Pliability</subject><subject>protein dynamics</subject><subject>Protein Structure, Secondary</subject><subject>Receptors, Fibroblast Growth Factor - chemistry</subject><subject>Receptors, Fibroblast Growth Factor - metabolism</subject><subject>Solvents - chemistry</subject><subject>Solvents - metabolism</subject><subject>Thermodynamics</subject><subject>translation/libration/screw tensors</subject><subject>X-ray crystallography</subject><subject>β-trefoil</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQQC0EglJY-AEoEwNSwF-J7bGqoCABRaiAxGLFsU0DSV1sR4V_TyAFNqYb7t2T7gFwgOAJghCfLr2LJxhiIjbAAEHBUogI3QQDyDlLScazHbAbwguEMBck3wY7KCMcYywGYDxaJEV0TVUm3gRXt7FyiyRE35ax9SaxzifztikWia2Ud6ouQkyevVvFeWKLMnZrtAe2bFEHs7-eQ3B_fjYbX6RX08nleHSVliQnIqUMKqI1FgrbzDDMMS210QoKrkSGKBZWUWap0poKWlLGac6JgBoTqzVTZAiOem_38FtrQpRNFUpT18XCuDbIPBc0RwJ34HEPlt6F4I2VS181hf-QCMqvZPIrmfxO1sGHa2urGqP_0HWjDkA9sKpq8_GPSt7eTWc_0rS_qUI07783hX-VOSMsk483E3n9RO-eHi5mkpBPzOmGOg</recordid><startdate>20041115</startdate><enddate>20041115</enddate><creator>Bernett, Matthew J.</creator><creator>Somasundaram, Thayumanasamy</creator><creator>Blaber, Michael</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20041115</creationdate><title>An atomic resolution structure for human fibroblast growth factor 1</title><author>Bernett, Matthew J. ; Somasundaram, Thayumanasamy ; Blaber, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3639-470b3dd29b2f5e72824cdedb098b951429fb47f4bdd494c478468390d23fdd7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>anisotropic displacement parameters</topic><topic>Anisotropy</topic><topic>atomic-resolution</topic><topic>Crystallography, X-Ray</topic><topic>fibroblast growth factor</topic><topic>Fibroblast Growth Factor 1 - chemistry</topic><topic>Fibroblast Growth Factor 1 - metabolism</topic><topic>Heparin - chemistry</topic><topic>Heparin - metabolism</topic><topic>Humans</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Motion</topic><topic>Pliability</topic><topic>protein dynamics</topic><topic>Protein Structure, Secondary</topic><topic>Receptors, Fibroblast Growth Factor - chemistry</topic><topic>Receptors, Fibroblast Growth Factor - metabolism</topic><topic>Solvents - chemistry</topic><topic>Solvents - metabolism</topic><topic>Thermodynamics</topic><topic>translation/libration/screw tensors</topic><topic>X-ray crystallography</topic><topic>β-trefoil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernett, Matthew J.</creatorcontrib><creatorcontrib>Somasundaram, Thayumanasamy</creatorcontrib><creatorcontrib>Blaber, Michael</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernett, Matthew J.</au><au>Somasundaram, Thayumanasamy</au><au>Blaber, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An atomic resolution structure for human fibroblast growth factor 1</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2004-11-15</date><risdate>2004</risdate><volume>57</volume><issue>3</issue><spage>626</spage><epage>634</epage><pages>626-634</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>A 1.10‐Å atomic resolution X‐ray structure of human fibroblast growth factor 1 (FGF‐1), a member of the β‐trefoil superfold, has been determined. The β‐trefoil is one of 10 fundamental protein superfolds and is the only superfold to exhibit 3‐fold structural symmetry (comprising 3 “trefoil” units). The quality of the diffraction data permits unambiguous assignment of Asn, Gln, and His rotamers, Pro ring pucker, as well as refinement of atomic anisotropic displacement parameters (ADPs). The FGF‐1 structure exhibits numerous core‐packing defects, detectable using a 1.0‐Å probe radius. In addition to contributing to the relatively low thermal stability of FGF‐1, these defects may also permit domain motions within the structure. The availability of refined ADPs allows a translation/libration/screw (TLS) analysis of putative rigid body domains. The TLS analysis shows that β‐strands 6–12 together form a rigid body, and there is a clear demarcation in TLS motions between the adjacent carboxyl‐ and amino‐termini. Although separate from β‐strands 6–12, the individual β‐strands 1–5 do not exhibit correlated motions; thus, this region appears to be comparatively flexible. The heparin‐binding contacts of FGF‐1 are located within β‐strands 6–12; conversely, a significant portion of the receptor‐binding contacts are located within β‐strands 1–5. Thus, the observed rigid body motion in FGF‐1 appears related to the ligand‐binding functionalities. Proteins 2004. © 2004 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15382229</pmid><doi>10.1002/prot.20239</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2004-11, Vol.57 (3), p.626-634
issn 0887-3585
1097-0134
language eng
recordid cdi_proquest_miscellaneous_66946192
source MEDLINE; Wiley Journals
subjects anisotropic displacement parameters
Anisotropy
atomic-resolution
Crystallography, X-Ray
fibroblast growth factor
Fibroblast Growth Factor 1 - chemistry
Fibroblast Growth Factor 1 - metabolism
Heparin - chemistry
Heparin - metabolism
Humans
Ligands
Models, Molecular
Motion
Pliability
protein dynamics
Protein Structure, Secondary
Receptors, Fibroblast Growth Factor - chemistry
Receptors, Fibroblast Growth Factor - metabolism
Solvents - chemistry
Solvents - metabolism
Thermodynamics
translation/libration/screw tensors
X-ray crystallography
β-trefoil
title An atomic resolution structure for human fibroblast growth factor 1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A24%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20atomic%20resolution%20structure%20for%20human%20fibroblast%20growth%20factor%201&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Bernett,%20Matthew%20J.&rft.date=2004-11-15&rft.volume=57&rft.issue=3&rft.spage=626&rft.epage=634&rft.pages=626-634&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.20239&rft_dat=%3Cproquest_cross%3E66946192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66946192&rft_id=info:pmid/15382229&rfr_iscdi=true