Sequential patterns of gene expression by bovine monocyte-derived macrophages associated with ingestion of mycobacterial organisms
We investigated mechanisms involved in killing of mycobacterial organisms by comparing the response of bovine monocyte-derived macrophages to ingestion of Mycobacterium avium subsp. paratuberculosis or M. avium subsp. avium organisms. Previous studies have shown that bovine macrophages have the capa...
Gespeichert in:
Veröffentlicht in: | Microbial pathogenesis 2004-10, Vol.37 (4), p.215-224 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 224 |
---|---|
container_issue | 4 |
container_start_page | 215 |
container_title | Microbial pathogenesis |
container_volume | 37 |
creator | Weiss, Douglas J. Evanson, Oral A. Deng, Mingqi Abrahamsen, Mitchell S. |
description | We investigated mechanisms involved in killing of mycobacterial organisms by comparing the response of bovine monocyte-derived macrophages to ingestion of
Mycobacterium avium subsp.
paratuberculosis or
M. avium subsp.
avium organisms. Previous studies have shown that bovine macrophages have the capacity to kill
M. avium subsp.
avium organisms in vitro but cannot kill
M. avium subsp.
paratuberculosis organisms. We used bovine cDNA microarray technology to investigate sequential gene expression by bovine monocyte-derived macrophages and function assays to correlate gene expression with biological activity. Results of the gene expression studies indicated substantial differences between macrophages phagocytizing the two organisms. At 2, 6, and 24
h after infection, 12, 53, and 19 genes, respectively, were differentially expressed. Over all time periods, approximately twice as many genes had lower expression in
M. avium subsp.
paratuberculosis-infected macrophages than had greater expression. Differentially regulated genes of most interest to antimicrobial responses included inflammatory molecules (transforming growth factor-β, thrombospondin 1, monocyte chemokine, and cathepsin K), phagosome–lysosome-related genes (H
+ ATPases, lysosomal-associated membrane protein 2, vesicle trafficking protein, and solute carrier protein), and apoptosis-related genes (tumor necrosis factor receptor-associated factor 2, and tumor protein p
53 binding protein). Function assays indicated that
M. avium subsp.
avium-infected macrophages had a greater capacity to acidify phagosomes and a greater percentage of apoptotic cells. In conclusion, these results suggest that a complex interaction between macrophages and mycobacterial organisms is involved in determining the fate of the organism. Although multiple genes and metabolic pathways are involved, the capacity of cells to acidify phagosomes and induce apoptosis appears to play a prominent role. |
doi_str_mv | 10.1016/j.micpath.2004.07.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66936337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0882401004000889</els_id><sourcerecordid>17851864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-4ae4c7d4e6259419ef26169245c44a9ee7e5bdf2bcac0f76843de1b15ece823a3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokPhEYBsYJfBdmwnWaGq4k-qxKJ0bd04NzMeJXawPQOz5clxNJG67MrS8XfPse8h5C2jW0aZ-nTYTtbMkPZbTqnY0npLKXtGNoy2qmScNs_JhjYNLwVl9Iq8ivFAKW1F1b4kV0wK2dQN35B_9_j7iC5ZGIvsljC4WPih2KHDAv_OAWO03hXduej8yWZx8s6bc8Kyx2BP2BcTmODnPewwFhCjNxZSlv_YtC-sy2paDLLndDa-A5MzljQfduBsnOJr8mKAMeKb9bwmD1-__Lr9Xt79_Pbj9uauNEKoVApAYepeoOKyFazFgSumWi5kvocWsUbZ9QPvDBg61KoRVY-sYxINNryC6pp8vPjOwec_x6QnGw2OIzj0x6iVaitVVfWTIKsbyRolMigvYF5AjAEHPQc7QThrRvXSkj7otSW9tKRprXNLee7dGnDsJuwfp9ZaMvBhBSAaGIcAztj4yCkmWcUWo_cXbgCvYRcy83DPc0JuWkrOZCY-XwjMmz1ZDDoai85gbwOapHtvn3jsfxv3wAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17851864</pqid></control><display><type>article</type><title>Sequential patterns of gene expression by bovine monocyte-derived macrophages associated with ingestion of mycobacterial organisms</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Weiss, Douglas J. ; Evanson, Oral A. ; Deng, Mingqi ; Abrahamsen, Mitchell S.</creator><creatorcontrib>Weiss, Douglas J. ; Evanson, Oral A. ; Deng, Mingqi ; Abrahamsen, Mitchell S.</creatorcontrib><description>We investigated mechanisms involved in killing of mycobacterial organisms by comparing the response of bovine monocyte-derived macrophages to ingestion of
Mycobacterium avium subsp.
paratuberculosis or
M. avium subsp.
avium organisms. Previous studies have shown that bovine macrophages have the capacity to kill
M. avium subsp.
avium organisms in vitro but cannot kill
M. avium subsp.
paratuberculosis organisms. We used bovine cDNA microarray technology to investigate sequential gene expression by bovine monocyte-derived macrophages and function assays to correlate gene expression with biological activity. Results of the gene expression studies indicated substantial differences between macrophages phagocytizing the two organisms. At 2, 6, and 24
h after infection, 12, 53, and 19 genes, respectively, were differentially expressed. Over all time periods, approximately twice as many genes had lower expression in
M. avium subsp.
paratuberculosis-infected macrophages than had greater expression. Differentially regulated genes of most interest to antimicrobial responses included inflammatory molecules (transforming growth factor-β, thrombospondin 1, monocyte chemokine, and cathepsin K), phagosome–lysosome-related genes (H
+ ATPases, lysosomal-associated membrane protein 2, vesicle trafficking protein, and solute carrier protein), and apoptosis-related genes (tumor necrosis factor receptor-associated factor 2, and tumor protein p
53 binding protein). Function assays indicated that
M. avium subsp.
avium-infected macrophages had a greater capacity to acidify phagosomes and a greater percentage of apoptotic cells. In conclusion, these results suggest that a complex interaction between macrophages and mycobacterial organisms is involved in determining the fate of the organism. Although multiple genes and metabolic pathways are involved, the capacity of cells to acidify phagosomes and induce apoptosis appears to play a prominent role.</description><identifier>ISSN: 0882-4010</identifier><identifier>EISSN: 1096-1208</identifier><identifier>DOI: 10.1016/j.micpath.2004.07.001</identifier><identifier>PMID: 15458782</identifier><identifier>CODEN: MIPAEV</identifier><language>eng</language><publisher>Oxford: Elsevier India Pvt Ltd</publisher><subject>animal pathogenic bacteria ; Animals ; Apoptosis - genetics ; Biological and medical sciences ; Cattle ; Cells, Cultured ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling ; Gene Expression Regulation ; Hydrogen-Ion Concentration ; Johne's disease ; Lysosomes - metabolism ; Macrophage ; Macrophage Inflammatory Proteins - genetics ; Macrophages - immunology ; Macrophages - microbiology ; Microarray ; microarray technology ; Microbiology ; Mycobacterium avium ; Mycobacterium avium - immunology ; Mycobacterium avium - pathogenicity ; Mycobacterium avium subsp. paratuberculosis ; Mycobacterium avium subsp. paratuberculosis - immunology ; Mycobacterium avium subsp. paratuberculosis - pathogenicity ; Oligonucleotide Array Sequence Analysis ; paratuberculosis ; Phagocytosis ; Phagosomes - metabolism ; Time Factors</subject><ispartof>Microbial pathogenesis, 2004-10, Vol.37 (4), p.215-224</ispartof><rights>2004 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-4ae4c7d4e6259419ef26169245c44a9ee7e5bdf2bcac0f76843de1b15ece823a3</citedby><cites>FETCH-LOGICAL-c446t-4ae4c7d4e6259419ef26169245c44a9ee7e5bdf2bcac0f76843de1b15ece823a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.micpath.2004.07.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16151311$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15458782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weiss, Douglas J.</creatorcontrib><creatorcontrib>Evanson, Oral A.</creatorcontrib><creatorcontrib>Deng, Mingqi</creatorcontrib><creatorcontrib>Abrahamsen, Mitchell S.</creatorcontrib><title>Sequential patterns of gene expression by bovine monocyte-derived macrophages associated with ingestion of mycobacterial organisms</title><title>Microbial pathogenesis</title><addtitle>Microb Pathog</addtitle><description>We investigated mechanisms involved in killing of mycobacterial organisms by comparing the response of bovine monocyte-derived macrophages to ingestion of
Mycobacterium avium subsp.
paratuberculosis or
M. avium subsp.
avium organisms. Previous studies have shown that bovine macrophages have the capacity to kill
M. avium subsp.
avium organisms in vitro but cannot kill
M. avium subsp.
paratuberculosis organisms. We used bovine cDNA microarray technology to investigate sequential gene expression by bovine monocyte-derived macrophages and function assays to correlate gene expression with biological activity. Results of the gene expression studies indicated substantial differences between macrophages phagocytizing the two organisms. At 2, 6, and 24
h after infection, 12, 53, and 19 genes, respectively, were differentially expressed. Over all time periods, approximately twice as many genes had lower expression in
M. avium subsp.
paratuberculosis-infected macrophages than had greater expression. Differentially regulated genes of most interest to antimicrobial responses included inflammatory molecules (transforming growth factor-β, thrombospondin 1, monocyte chemokine, and cathepsin K), phagosome–lysosome-related genes (H
+ ATPases, lysosomal-associated membrane protein 2, vesicle trafficking protein, and solute carrier protein), and apoptosis-related genes (tumor necrosis factor receptor-associated factor 2, and tumor protein p
53 binding protein). Function assays indicated that
M. avium subsp.
avium-infected macrophages had a greater capacity to acidify phagosomes and a greater percentage of apoptotic cells. In conclusion, these results suggest that a complex interaction between macrophages and mycobacterial organisms is involved in determining the fate of the organism. Although multiple genes and metabolic pathways are involved, the capacity of cells to acidify phagosomes and induce apoptosis appears to play a prominent role.</description><subject>animal pathogenic bacteria</subject><subject>Animals</subject><subject>Apoptosis - genetics</subject><subject>Biological and medical sciences</subject><subject>Cattle</subject><subject>Cells, Cultured</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Hydrogen-Ion Concentration</subject><subject>Johne's disease</subject><subject>Lysosomes - metabolism</subject><subject>Macrophage</subject><subject>Macrophage Inflammatory Proteins - genetics</subject><subject>Macrophages - immunology</subject><subject>Macrophages - microbiology</subject><subject>Microarray</subject><subject>microarray technology</subject><subject>Microbiology</subject><subject>Mycobacterium avium</subject><subject>Mycobacterium avium - immunology</subject><subject>Mycobacterium avium - pathogenicity</subject><subject>Mycobacterium avium subsp. paratuberculosis</subject><subject>Mycobacterium avium subsp. paratuberculosis - immunology</subject><subject>Mycobacterium avium subsp. paratuberculosis - pathogenicity</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>paratuberculosis</subject><subject>Phagocytosis</subject><subject>Phagosomes - metabolism</subject><subject>Time Factors</subject><issn>0882-4010</issn><issn>1096-1208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EokPhEYBsYJfBdmwnWaGq4k-qxKJ0bd04NzMeJXawPQOz5clxNJG67MrS8XfPse8h5C2jW0aZ-nTYTtbMkPZbTqnY0npLKXtGNoy2qmScNs_JhjYNLwVl9Iq8ivFAKW1F1b4kV0wK2dQN35B_9_j7iC5ZGIvsljC4WPih2KHDAv_OAWO03hXduej8yWZx8s6bc8Kyx2BP2BcTmODnPewwFhCjNxZSlv_YtC-sy2paDLLndDa-A5MzljQfduBsnOJr8mKAMeKb9bwmD1-__Lr9Xt79_Pbj9uauNEKoVApAYepeoOKyFazFgSumWi5kvocWsUbZ9QPvDBg61KoRVY-sYxINNryC6pp8vPjOwec_x6QnGw2OIzj0x6iVaitVVfWTIKsbyRolMigvYF5AjAEHPQc7QThrRvXSkj7otSW9tKRprXNLee7dGnDsJuwfp9ZaMvBhBSAaGIcAztj4yCkmWcUWo_cXbgCvYRcy83DPc0JuWkrOZCY-XwjMmz1ZDDoai85gbwOapHtvn3jsfxv3wAE</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Weiss, Douglas J.</creator><creator>Evanson, Oral A.</creator><creator>Deng, Mingqi</creator><creator>Abrahamsen, Mitchell S.</creator><general>Elsevier India Pvt Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20041001</creationdate><title>Sequential patterns of gene expression by bovine monocyte-derived macrophages associated with ingestion of mycobacterial organisms</title><author>Weiss, Douglas J. ; Evanson, Oral A. ; Deng, Mingqi ; Abrahamsen, Mitchell S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-4ae4c7d4e6259419ef26169245c44a9ee7e5bdf2bcac0f76843de1b15ece823a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>animal pathogenic bacteria</topic><topic>Animals</topic><topic>Apoptosis - genetics</topic><topic>Biological and medical sciences</topic><topic>Cattle</topic><topic>Cells, Cultured</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Hydrogen-Ion Concentration</topic><topic>Johne's disease</topic><topic>Lysosomes - metabolism</topic><topic>Macrophage</topic><topic>Macrophage Inflammatory Proteins - genetics</topic><topic>Macrophages - immunology</topic><topic>Macrophages - microbiology</topic><topic>Microarray</topic><topic>microarray technology</topic><topic>Microbiology</topic><topic>Mycobacterium avium</topic><topic>Mycobacterium avium - immunology</topic><topic>Mycobacterium avium - pathogenicity</topic><topic>Mycobacterium avium subsp. paratuberculosis</topic><topic>Mycobacterium avium subsp. paratuberculosis - immunology</topic><topic>Mycobacterium avium subsp. paratuberculosis - pathogenicity</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>paratuberculosis</topic><topic>Phagocytosis</topic><topic>Phagosomes - metabolism</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weiss, Douglas J.</creatorcontrib><creatorcontrib>Evanson, Oral A.</creatorcontrib><creatorcontrib>Deng, Mingqi</creatorcontrib><creatorcontrib>Abrahamsen, Mitchell S.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Microbial pathogenesis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weiss, Douglas J.</au><au>Evanson, Oral A.</au><au>Deng, Mingqi</au><au>Abrahamsen, Mitchell S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential patterns of gene expression by bovine monocyte-derived macrophages associated with ingestion of mycobacterial organisms</atitle><jtitle>Microbial pathogenesis</jtitle><addtitle>Microb Pathog</addtitle><date>2004-10-01</date><risdate>2004</risdate><volume>37</volume><issue>4</issue><spage>215</spage><epage>224</epage><pages>215-224</pages><issn>0882-4010</issn><eissn>1096-1208</eissn><coden>MIPAEV</coden><abstract>We investigated mechanisms involved in killing of mycobacterial organisms by comparing the response of bovine monocyte-derived macrophages to ingestion of
Mycobacterium avium subsp.
paratuberculosis or
M. avium subsp.
avium organisms. Previous studies have shown that bovine macrophages have the capacity to kill
M. avium subsp.
avium organisms in vitro but cannot kill
M. avium subsp.
paratuberculosis organisms. We used bovine cDNA microarray technology to investigate sequential gene expression by bovine monocyte-derived macrophages and function assays to correlate gene expression with biological activity. Results of the gene expression studies indicated substantial differences between macrophages phagocytizing the two organisms. At 2, 6, and 24
h after infection, 12, 53, and 19 genes, respectively, were differentially expressed. Over all time periods, approximately twice as many genes had lower expression in
M. avium subsp.
paratuberculosis-infected macrophages than had greater expression. Differentially regulated genes of most interest to antimicrobial responses included inflammatory molecules (transforming growth factor-β, thrombospondin 1, monocyte chemokine, and cathepsin K), phagosome–lysosome-related genes (H
+ ATPases, lysosomal-associated membrane protein 2, vesicle trafficking protein, and solute carrier protein), and apoptosis-related genes (tumor necrosis factor receptor-associated factor 2, and tumor protein p
53 binding protein). Function assays indicated that
M. avium subsp.
avium-infected macrophages had a greater capacity to acidify phagosomes and a greater percentage of apoptotic cells. In conclusion, these results suggest that a complex interaction between macrophages and mycobacterial organisms is involved in determining the fate of the organism. Although multiple genes and metabolic pathways are involved, the capacity of cells to acidify phagosomes and induce apoptosis appears to play a prominent role.</abstract><cop>Oxford</cop><pub>Elsevier India Pvt Ltd</pub><pmid>15458782</pmid><doi>10.1016/j.micpath.2004.07.001</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0882-4010 |
ispartof | Microbial pathogenesis, 2004-10, Vol.37 (4), p.215-224 |
issn | 0882-4010 1096-1208 |
language | eng |
recordid | cdi_proquest_miscellaneous_66936337 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | animal pathogenic bacteria Animals Apoptosis - genetics Biological and medical sciences Cattle Cells, Cultured Fundamental and applied biological sciences. Psychology Gene Expression Profiling Gene Expression Regulation Hydrogen-Ion Concentration Johne's disease Lysosomes - metabolism Macrophage Macrophage Inflammatory Proteins - genetics Macrophages - immunology Macrophages - microbiology Microarray microarray technology Microbiology Mycobacterium avium Mycobacterium avium - immunology Mycobacterium avium - pathogenicity Mycobacterium avium subsp. paratuberculosis Mycobacterium avium subsp. paratuberculosis - immunology Mycobacterium avium subsp. paratuberculosis - pathogenicity Oligonucleotide Array Sequence Analysis paratuberculosis Phagocytosis Phagosomes - metabolism Time Factors |
title | Sequential patterns of gene expression by bovine monocyte-derived macrophages associated with ingestion of mycobacterial organisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A24%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20patterns%20of%20gene%20expression%20by%20bovine%20monocyte-derived%20macrophages%20associated%20with%20ingestion%20of%20mycobacterial%20organisms&rft.jtitle=Microbial%20pathogenesis&rft.au=Weiss,%20Douglas%20J.&rft.date=2004-10-01&rft.volume=37&rft.issue=4&rft.spage=215&rft.epage=224&rft.pages=215-224&rft.issn=0882-4010&rft.eissn=1096-1208&rft.coden=MIPAEV&rft_id=info:doi/10.1016/j.micpath.2004.07.001&rft_dat=%3Cproquest_cross%3E17851864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17851864&rft_id=info:pmid/15458782&rft_els_id=S0882401004000889&rfr_iscdi=true |