The zinc complex catalyzed hydration of alkyl isothiocyanates

Based upon our preceding studies of the hydration of CO 2 , COS and CS 2 , accelerated by the carbonic anhydrase (CA) using simplified [ZnL 3 OH] + complexes as model catalysts, we calculated the hydration mechanisms of both the uncatalyzed and the [ZnL 3 OH] + -catalyzed reactions (L = NH 3 ) of is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular modeling 2009-04, Vol.15 (4), p.433-446
Hauptverfasser: Eger, Wilhelm A., Jahn, Burkhard O., Anders, Ernst
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 446
container_issue 4
container_start_page 433
container_title Journal of molecular modeling
container_volume 15
creator Eger, Wilhelm A.
Jahn, Burkhard O.
Anders, Ernst
description Based upon our preceding studies of the hydration of CO 2 , COS and CS 2 , accelerated by the carbonic anhydrase (CA) using simplified [ZnL 3 OH] + complexes as model catalysts, we calculated the hydration mechanisms of both the uncatalyzed and the [ZnL 3 OH] + -catalyzed reactions (L = NH 3 ) of isothiocyanates RNCS on the B3LYP/6-311+G(d,p) level of theory. Interestingly, the transition state for the favored metal mediated reaction with the lowest Gibbs free energy is only slightly higher than in the case of CO 2 (depending on the attacking atom (N or S). Calculations under inclusion of solvent corrections show a reduction of the selectivity and a slight decrease of the Gibbs free energy in the rate-determining steps. The most plausible pathway prefers the mechanism via a Lindskog proton-shift transition state leading to the thermodynamically most stable product, the carbamatic-S-acid. Furthermore, powerful electron withdrawing substituents R of the cumulenic substrates influence the selectivity of the reaction to a significant extent. Especially the CF 3 -group in trifluoromethylisothiocyanate reverses the selectivity. This investigation demonstrates that reaction principles developed by nature can be translated to develop efficient catalytic methods, in this case presumably for the transformation of a wide variety of heterocumulenes aside from CO 2 , COS and CS 2 . Figure Competing transition structures for the [ZnL 3 OH] + -mediated activation of isothiocyanates
doi_str_mv 10.1007/s00894-008-0385-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66935815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66935815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-7fb10fda942342a91660ba41358710ccc5807285eebf86e9b7893110bf457f013</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EolXpB2BBmdgMZyd27IEBIf5JlVjKbDmOTVOSuMSJ1PTT4yqV2Fje6XS_96R7CF0TuCMA-X0AEDLDUTGkguH9GZqDzARmQNNzNCecAKYygxlahrAFAEIZZ5ReohmRICLG5-hhvbHJoWpNYnyzq-0-MbrX9XiwZbIZy073lW8T7xJdf491UgXfbypvRt3q3oYrdOF0HezyNBfo8-V5_fSGVx-v70-PK2zSjPY4dwUBV2qZ0bhrSTiHQmckZSInYIxhAnIqmLWFE9zKIhcyJQQKl7HcAUkX6HbK3XX-Z7ChV00VjK1r3Vo_BMW5jFmERZBMoOl8CJ11atdVje5GRUAda1NTbSqqOtam9tFzcwofisaWf45TSRGgExDiqf2yndr6oWvjw_-k_gKBcnea</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66935815</pqid></control><display><type>article</type><title>The zinc complex catalyzed hydration of alkyl isothiocyanates</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Eger, Wilhelm A. ; Jahn, Burkhard O. ; Anders, Ernst</creator><creatorcontrib>Eger, Wilhelm A. ; Jahn, Burkhard O. ; Anders, Ernst</creatorcontrib><description>Based upon our preceding studies of the hydration of CO 2 , COS and CS 2 , accelerated by the carbonic anhydrase (CA) using simplified [ZnL 3 OH] + complexes as model catalysts, we calculated the hydration mechanisms of both the uncatalyzed and the [ZnL 3 OH] + -catalyzed reactions (L = NH 3 ) of isothiocyanates RNCS on the B3LYP/6-311+G(d,p) level of theory. Interestingly, the transition state for the favored metal mediated reaction with the lowest Gibbs free energy is only slightly higher than in the case of CO 2 (depending on the attacking atom (N or S). Calculations under inclusion of solvent corrections show a reduction of the selectivity and a slight decrease of the Gibbs free energy in the rate-determining steps. The most plausible pathway prefers the mechanism via a Lindskog proton-shift transition state leading to the thermodynamically most stable product, the carbamatic-S-acid. Furthermore, powerful electron withdrawing substituents R of the cumulenic substrates influence the selectivity of the reaction to a significant extent. Especially the CF 3 -group in trifluoromethylisothiocyanate reverses the selectivity. This investigation demonstrates that reaction principles developed by nature can be translated to develop efficient catalytic methods, in this case presumably for the transformation of a wide variety of heterocumulenes aside from CO 2 , COS and CS 2 . Figure Competing transition structures for the [ZnL 3 OH] + -mediated activation of isothiocyanates</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-008-0385-x</identifier><identifier>PMID: 19085026</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Catalysis ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; Isothiocyanates - chemistry ; Models, Chemical ; Molecular Medicine ; Original Paper ; Theoretical and Computational Chemistry ; Thermodynamics ; Zinc - chemistry</subject><ispartof>Journal of molecular modeling, 2009-04, Vol.15 (4), p.433-446</ispartof><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-7fb10fda942342a91660ba41358710ccc5807285eebf86e9b7893110bf457f013</citedby><cites>FETCH-LOGICAL-c342t-7fb10fda942342a91660ba41358710ccc5807285eebf86e9b7893110bf457f013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00894-008-0385-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00894-008-0385-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19085026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eger, Wilhelm A.</creatorcontrib><creatorcontrib>Jahn, Burkhard O.</creatorcontrib><creatorcontrib>Anders, Ernst</creatorcontrib><title>The zinc complex catalyzed hydration of alkyl isothiocyanates</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><addtitle>J Mol Model</addtitle><description>Based upon our preceding studies of the hydration of CO 2 , COS and CS 2 , accelerated by the carbonic anhydrase (CA) using simplified [ZnL 3 OH] + complexes as model catalysts, we calculated the hydration mechanisms of both the uncatalyzed and the [ZnL 3 OH] + -catalyzed reactions (L = NH 3 ) of isothiocyanates RNCS on the B3LYP/6-311+G(d,p) level of theory. Interestingly, the transition state for the favored metal mediated reaction with the lowest Gibbs free energy is only slightly higher than in the case of CO 2 (depending on the attacking atom (N or S). Calculations under inclusion of solvent corrections show a reduction of the selectivity and a slight decrease of the Gibbs free energy in the rate-determining steps. The most plausible pathway prefers the mechanism via a Lindskog proton-shift transition state leading to the thermodynamically most stable product, the carbamatic-S-acid. Furthermore, powerful electron withdrawing substituents R of the cumulenic substrates influence the selectivity of the reaction to a significant extent. Especially the CF 3 -group in trifluoromethylisothiocyanate reverses the selectivity. This investigation demonstrates that reaction principles developed by nature can be translated to develop efficient catalytic methods, in this case presumably for the transformation of a wide variety of heterocumulenes aside from CO 2 , COS and CS 2 . Figure Competing transition structures for the [ZnL 3 OH] + -mediated activation of isothiocyanates</description><subject>Catalysis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>Isothiocyanates - chemistry</subject><subject>Models, Chemical</subject><subject>Molecular Medicine</subject><subject>Original Paper</subject><subject>Theoretical and Computational Chemistry</subject><subject>Thermodynamics</subject><subject>Zinc - chemistry</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD9PwzAQxS0EolXpB2BBmdgMZyd27IEBIf5JlVjKbDmOTVOSuMSJ1PTT4yqV2Fje6XS_96R7CF0TuCMA-X0AEDLDUTGkguH9GZqDzARmQNNzNCecAKYygxlahrAFAEIZZ5ReohmRICLG5-hhvbHJoWpNYnyzq-0-MbrX9XiwZbIZy073lW8T7xJdf491UgXfbypvRt3q3oYrdOF0HezyNBfo8-V5_fSGVx-v70-PK2zSjPY4dwUBV2qZ0bhrSTiHQmckZSInYIxhAnIqmLWFE9zKIhcyJQQKl7HcAUkX6HbK3XX-Z7ChV00VjK1r3Vo_BMW5jFmERZBMoOl8CJ11atdVje5GRUAda1NTbSqqOtam9tFzcwofisaWf45TSRGgExDiqf2yndr6oWvjw_-k_gKBcnea</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Eger, Wilhelm A.</creator><creator>Jahn, Burkhard O.</creator><creator>Anders, Ernst</creator><general>Springer-Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090401</creationdate><title>The zinc complex catalyzed hydration of alkyl isothiocyanates</title><author>Eger, Wilhelm A. ; Jahn, Burkhard O. ; Anders, Ernst</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-7fb10fda942342a91660ba41358710ccc5807285eebf86e9b7893110bf457f013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Catalysis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>Isothiocyanates - chemistry</topic><topic>Models, Chemical</topic><topic>Molecular Medicine</topic><topic>Original Paper</topic><topic>Theoretical and Computational Chemistry</topic><topic>Thermodynamics</topic><topic>Zinc - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eger, Wilhelm A.</creatorcontrib><creatorcontrib>Jahn, Burkhard O.</creatorcontrib><creatorcontrib>Anders, Ernst</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eger, Wilhelm A.</au><au>Jahn, Burkhard O.</au><au>Anders, Ernst</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The zinc complex catalyzed hydration of alkyl isothiocyanates</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><addtitle>J Mol Model</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>15</volume><issue>4</issue><spage>433</spage><epage>446</epage><pages>433-446</pages><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>Based upon our preceding studies of the hydration of CO 2 , COS and CS 2 , accelerated by the carbonic anhydrase (CA) using simplified [ZnL 3 OH] + complexes as model catalysts, we calculated the hydration mechanisms of both the uncatalyzed and the [ZnL 3 OH] + -catalyzed reactions (L = NH 3 ) of isothiocyanates RNCS on the B3LYP/6-311+G(d,p) level of theory. Interestingly, the transition state for the favored metal mediated reaction with the lowest Gibbs free energy is only slightly higher than in the case of CO 2 (depending on the attacking atom (N or S). Calculations under inclusion of solvent corrections show a reduction of the selectivity and a slight decrease of the Gibbs free energy in the rate-determining steps. The most plausible pathway prefers the mechanism via a Lindskog proton-shift transition state leading to the thermodynamically most stable product, the carbamatic-S-acid. Furthermore, powerful electron withdrawing substituents R of the cumulenic substrates influence the selectivity of the reaction to a significant extent. Especially the CF 3 -group in trifluoromethylisothiocyanate reverses the selectivity. This investigation demonstrates that reaction principles developed by nature can be translated to develop efficient catalytic methods, in this case presumably for the transformation of a wide variety of heterocumulenes aside from CO 2 , COS and CS 2 . Figure Competing transition structures for the [ZnL 3 OH] + -mediated activation of isothiocyanates</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>19085026</pmid><doi>10.1007/s00894-008-0385-x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1610-2940
ispartof Journal of molecular modeling, 2009-04, Vol.15 (4), p.433-446
issn 1610-2940
0948-5023
language eng
recordid cdi_proquest_miscellaneous_66935815
source MEDLINE; SpringerLink Journals
subjects Catalysis
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Computer Appl. in Life Sciences
Computer Applications in Chemistry
Isothiocyanates - chemistry
Models, Chemical
Molecular Medicine
Original Paper
Theoretical and Computational Chemistry
Thermodynamics
Zinc - chemistry
title The zinc complex catalyzed hydration of alkyl isothiocyanates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20zinc%20complex%20catalyzed%20hydration%20of%20alkyl%20isothiocyanates&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Eger,%20Wilhelm%20A.&rft.date=2009-04-01&rft.volume=15&rft.issue=4&rft.spage=433&rft.epage=446&rft.pages=433-446&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-008-0385-x&rft_dat=%3Cproquest_cross%3E66935815%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66935815&rft_id=info:pmid/19085026&rfr_iscdi=true