A Novel Model System for Design of Biomaterials Based on Recombinant Analogs of Spider Silk Proteins

Spider dragline silk possesses impressive mechanical and biochemical properties. It is synthesized by a couple of major ampullate glands in spiders and comprises of two major structural proteins—spidroins 1 and 2. The relationship between structure and mechanical properties of spider silk is not wel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroimmune pharmacology 2009-03, Vol.4 (1), p.17-27
Hauptverfasser: Bogush, Vladimir G., Sokolova, Olga S., Davydova, Lyubov I., Klinov, Dmitri V., Sidoruk, Konstantin V., Esipova, Natalya G., Neretina, Tatyana V., Orchanskyi, Igor A., Makeev, Vsevolod Yu, Tumanyan, Vladimir G., Shaitan, Konstantin V., Debabov, Vladimir G., Kirpichnikov, Mikhail P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 1
container_start_page 17
container_title Journal of neuroimmune pharmacology
container_volume 4
creator Bogush, Vladimir G.
Sokolova, Olga S.
Davydova, Lyubov I.
Klinov, Dmitri V.
Sidoruk, Konstantin V.
Esipova, Natalya G.
Neretina, Tatyana V.
Orchanskyi, Igor A.
Makeev, Vsevolod Yu
Tumanyan, Vladimir G.
Shaitan, Konstantin V.
Debabov, Vladimir G.
Kirpichnikov, Mikhail P.
description Spider dragline silk possesses impressive mechanical and biochemical properties. It is synthesized by a couple of major ampullate glands in spiders and comprises of two major structural proteins—spidroins 1 and 2. The relationship between structure and mechanical properties of spider silk is not well understood. Here, we modeled the complete process of the spider silk assembly using two new recombinant analogs of spidroins 1 and 2. The artificial genes sequence of the hydrophobic core regions of spidroin 1 and 2 have been designed using computer analysis of existing databases and mathematical modeling. Both proteins were expressed in Pichia pastoris and purified using a cation exchange chromatography. Despite the absence of hydrophilic N- and C-termini, both purified proteins spontaneously formed the nanofibrils and round micelles of about 1 μm in aqueous solutions. The electron microscopy study has revealed the helical structure of a nanofibril with a repeating motif of 40 nm. Using the electrospinning, the thin films with an antiparallel β-sheet structure were produced. In summary, we were able to obtain artificial structures with characteristics that are perspective for further biomedical applications, such as producing three-dimensional matrices for tissue engineering and drug delivery.
doi_str_mv 10.1007/s11481-008-9129-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66934874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1950826142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-adbb1361b26ae9b614623043d2c4785f6d0f2a173fe04c16f071ce1a69185bbb3</originalsourceid><addsrcrecordid>eNqFkV2L1DAUhoMo7jr6A7yRgOBd9Zw0TZPL2fUT1g8cvQ5JezpkbZsx6Qi7v94MM6II4k0SyPO--XgYe4zwHAHaFxlRaqwAdGVQmOr2DjvHpmkrNCDv_lprA2fsQc7XAFJKgPvsDLWuTY3ynPVr_iH-oJG_j30ZNzd5oYkPMfGXlMN25nHgFyFObqEU3Jj5hcvU8zjzz9TFyYfZzQtfz26M23yAN7vQU-KbMH7jn1JcKMz5Ibs3lCw9Os0r9vX1qy-Xb6urj2_eXa6vqk4CLpXrvcdaoRfKkfEKpRI1yLoXnWx1M6geBuGwrQcC2aEaoMWO0CmDuvHe1yv27Ni7S_H7nvJip5A7Gkc3U9xnq5SppW7lf0GB2BhVvmjFnv4FXsd9Kq_NFk0DWpRLikLhkepSzDnRYHcpTC7dWAR7MGWPpmwxZQ-m7G3JPDk17_1E_e_ESU0BxBHIZWveUvrj6H-2_gQCKJ1e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950826142</pqid></control><display><type>article</type><title>A Novel Model System for Design of Biomaterials Based on Recombinant Analogs of Spider Silk Proteins</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Bogush, Vladimir G. ; Sokolova, Olga S. ; Davydova, Lyubov I. ; Klinov, Dmitri V. ; Sidoruk, Konstantin V. ; Esipova, Natalya G. ; Neretina, Tatyana V. ; Orchanskyi, Igor A. ; Makeev, Vsevolod Yu ; Tumanyan, Vladimir G. ; Shaitan, Konstantin V. ; Debabov, Vladimir G. ; Kirpichnikov, Mikhail P.</creator><creatorcontrib>Bogush, Vladimir G. ; Sokolova, Olga S. ; Davydova, Lyubov I. ; Klinov, Dmitri V. ; Sidoruk, Konstantin V. ; Esipova, Natalya G. ; Neretina, Tatyana V. ; Orchanskyi, Igor A. ; Makeev, Vsevolod Yu ; Tumanyan, Vladimir G. ; Shaitan, Konstantin V. ; Debabov, Vladimir G. ; Kirpichnikov, Mikhail P.</creatorcontrib><description>Spider dragline silk possesses impressive mechanical and biochemical properties. It is synthesized by a couple of major ampullate glands in spiders and comprises of two major structural proteins—spidroins 1 and 2. The relationship between structure and mechanical properties of spider silk is not well understood. Here, we modeled the complete process of the spider silk assembly using two new recombinant analogs of spidroins 1 and 2. The artificial genes sequence of the hydrophobic core regions of spidroin 1 and 2 have been designed using computer analysis of existing databases and mathematical modeling. Both proteins were expressed in Pichia pastoris and purified using a cation exchange chromatography. Despite the absence of hydrophilic N- and C-termini, both purified proteins spontaneously formed the nanofibrils and round micelles of about 1 μm in aqueous solutions. The electron microscopy study has revealed the helical structure of a nanofibril with a repeating motif of 40 nm. Using the electrospinning, the thin films with an antiparallel β-sheet structure were produced. In summary, we were able to obtain artificial structures with characteristics that are perspective for further biomedical applications, such as producing three-dimensional matrices for tissue engineering and drug delivery.</description><identifier>ISSN: 1557-1890</identifier><identifier>EISSN: 1557-1904</identifier><identifier>DOI: 10.1007/s11481-008-9129-z</identifier><identifier>PMID: 18839314</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Animals ; Araneae ; Biocompatible Materials - chemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Circular Dichroism ; Immunology ; Microscopy, Atomic Force ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Models, Molecular ; Models, Statistical ; Nanotechnology ; Neurosciences ; Original Article ; Pharmacology/Toxicology ; Pichia pastoris ; Proteins ; Recombinant Proteins - chemistry ; Silk ; Silk - chemistry ; Silk - genetics ; Silk - ultrastructure ; Solutions ; Spectrometry, Mass, Electrospray Ionization ; Spectrophotometry, Infrared ; Spiders ; Spiders - chemistry ; Spiders - genetics ; Tissue Engineering ; Virology</subject><ispartof>Journal of neuroimmune pharmacology, 2009-03, Vol.4 (1), p.17-27</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>Journal of Neuroimmune Pharmacology is a copyright of Springer, 2009.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-adbb1361b26ae9b614623043d2c4785f6d0f2a173fe04c16f071ce1a69185bbb3</citedby><cites>FETCH-LOGICAL-c401t-adbb1361b26ae9b614623043d2c4785f6d0f2a173fe04c16f071ce1a69185bbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11481-008-9129-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11481-008-9129-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18839314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bogush, Vladimir G.</creatorcontrib><creatorcontrib>Sokolova, Olga S.</creatorcontrib><creatorcontrib>Davydova, Lyubov I.</creatorcontrib><creatorcontrib>Klinov, Dmitri V.</creatorcontrib><creatorcontrib>Sidoruk, Konstantin V.</creatorcontrib><creatorcontrib>Esipova, Natalya G.</creatorcontrib><creatorcontrib>Neretina, Tatyana V.</creatorcontrib><creatorcontrib>Orchanskyi, Igor A.</creatorcontrib><creatorcontrib>Makeev, Vsevolod Yu</creatorcontrib><creatorcontrib>Tumanyan, Vladimir G.</creatorcontrib><creatorcontrib>Shaitan, Konstantin V.</creatorcontrib><creatorcontrib>Debabov, Vladimir G.</creatorcontrib><creatorcontrib>Kirpichnikov, Mikhail P.</creatorcontrib><title>A Novel Model System for Design of Biomaterials Based on Recombinant Analogs of Spider Silk Proteins</title><title>Journal of neuroimmune pharmacology</title><addtitle>J Neuroimmune Pharmacol</addtitle><addtitle>J Neuroimmune Pharmacol</addtitle><description>Spider dragline silk possesses impressive mechanical and biochemical properties. It is synthesized by a couple of major ampullate glands in spiders and comprises of two major structural proteins—spidroins 1 and 2. The relationship between structure and mechanical properties of spider silk is not well understood. Here, we modeled the complete process of the spider silk assembly using two new recombinant analogs of spidroins 1 and 2. The artificial genes sequence of the hydrophobic core regions of spidroin 1 and 2 have been designed using computer analysis of existing databases and mathematical modeling. Both proteins were expressed in Pichia pastoris and purified using a cation exchange chromatography. Despite the absence of hydrophilic N- and C-termini, both purified proteins spontaneously formed the nanofibrils and round micelles of about 1 μm in aqueous solutions. The electron microscopy study has revealed the helical structure of a nanofibril with a repeating motif of 40 nm. Using the electrospinning, the thin films with an antiparallel β-sheet structure were produced. In summary, we were able to obtain artificial structures with characteristics that are perspective for further biomedical applications, such as producing three-dimensional matrices for tissue engineering and drug delivery.</description><subject>Animals</subject><subject>Araneae</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Circular Dichroism</subject><subject>Immunology</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Models, Molecular</subject><subject>Models, Statistical</subject><subject>Nanotechnology</subject><subject>Neurosciences</subject><subject>Original Article</subject><subject>Pharmacology/Toxicology</subject><subject>Pichia pastoris</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Silk</subject><subject>Silk - chemistry</subject><subject>Silk - genetics</subject><subject>Silk - ultrastructure</subject><subject>Solutions</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><subject>Spectrophotometry, Infrared</subject><subject>Spiders</subject><subject>Spiders - chemistry</subject><subject>Spiders - genetics</subject><subject>Tissue Engineering</subject><subject>Virology</subject><issn>1557-1890</issn><issn>1557-1904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkV2L1DAUhoMo7jr6A7yRgOBd9Zw0TZPL2fUT1g8cvQ5JezpkbZsx6Qi7v94MM6II4k0SyPO--XgYe4zwHAHaFxlRaqwAdGVQmOr2DjvHpmkrNCDv_lprA2fsQc7XAFJKgPvsDLWuTY3ynPVr_iH-oJG_j30ZNzd5oYkPMfGXlMN25nHgFyFObqEU3Jj5hcvU8zjzz9TFyYfZzQtfz26M23yAN7vQU-KbMH7jn1JcKMz5Ibs3lCw9Os0r9vX1qy-Xb6urj2_eXa6vqk4CLpXrvcdaoRfKkfEKpRI1yLoXnWx1M6geBuGwrQcC2aEaoMWO0CmDuvHe1yv27Ni7S_H7nvJip5A7Gkc3U9xnq5SppW7lf0GB2BhVvmjFnv4FXsd9Kq_NFk0DWpRLikLhkepSzDnRYHcpTC7dWAR7MGWPpmwxZQ-m7G3JPDk17_1E_e_ESU0BxBHIZWveUvrj6H-2_gQCKJ1e</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Bogush, Vladimir G.</creator><creator>Sokolova, Olga S.</creator><creator>Davydova, Lyubov I.</creator><creator>Klinov, Dmitri V.</creator><creator>Sidoruk, Konstantin V.</creator><creator>Esipova, Natalya G.</creator><creator>Neretina, Tatyana V.</creator><creator>Orchanskyi, Igor A.</creator><creator>Makeev, Vsevolod Yu</creator><creator>Tumanyan, Vladimir G.</creator><creator>Shaitan, Konstantin V.</creator><creator>Debabov, Vladimir G.</creator><creator>Kirpichnikov, Mikhail P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7QO</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20090301</creationdate><title>A Novel Model System for Design of Biomaterials Based on Recombinant Analogs of Spider Silk Proteins</title><author>Bogush, Vladimir G. ; Sokolova, Olga S. ; Davydova, Lyubov I. ; Klinov, Dmitri V. ; Sidoruk, Konstantin V. ; Esipova, Natalya G. ; Neretina, Tatyana V. ; Orchanskyi, Igor A. ; Makeev, Vsevolod Yu ; Tumanyan, Vladimir G. ; Shaitan, Konstantin V. ; Debabov, Vladimir G. ; Kirpichnikov, Mikhail P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-adbb1361b26ae9b614623043d2c4785f6d0f2a173fe04c16f071ce1a69185bbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Araneae</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Circular Dichroism</topic><topic>Immunology</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Models, Molecular</topic><topic>Models, Statistical</topic><topic>Nanotechnology</topic><topic>Neurosciences</topic><topic>Original Article</topic><topic>Pharmacology/Toxicology</topic><topic>Pichia pastoris</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Silk</topic><topic>Silk - chemistry</topic><topic>Silk - genetics</topic><topic>Silk - ultrastructure</topic><topic>Solutions</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><topic>Spectrophotometry, Infrared</topic><topic>Spiders</topic><topic>Spiders - chemistry</topic><topic>Spiders - genetics</topic><topic>Tissue Engineering</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bogush, Vladimir G.</creatorcontrib><creatorcontrib>Sokolova, Olga S.</creatorcontrib><creatorcontrib>Davydova, Lyubov I.</creatorcontrib><creatorcontrib>Klinov, Dmitri V.</creatorcontrib><creatorcontrib>Sidoruk, Konstantin V.</creatorcontrib><creatorcontrib>Esipova, Natalya G.</creatorcontrib><creatorcontrib>Neretina, Tatyana V.</creatorcontrib><creatorcontrib>Orchanskyi, Igor A.</creatorcontrib><creatorcontrib>Makeev, Vsevolod Yu</creatorcontrib><creatorcontrib>Tumanyan, Vladimir G.</creatorcontrib><creatorcontrib>Shaitan, Konstantin V.</creatorcontrib><creatorcontrib>Debabov, Vladimir G.</creatorcontrib><creatorcontrib>Kirpichnikov, Mikhail P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroimmune pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogush, Vladimir G.</au><au>Sokolova, Olga S.</au><au>Davydova, Lyubov I.</au><au>Klinov, Dmitri V.</au><au>Sidoruk, Konstantin V.</au><au>Esipova, Natalya G.</au><au>Neretina, Tatyana V.</au><au>Orchanskyi, Igor A.</au><au>Makeev, Vsevolod Yu</au><au>Tumanyan, Vladimir G.</au><au>Shaitan, Konstantin V.</au><au>Debabov, Vladimir G.</au><au>Kirpichnikov, Mikhail P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Model System for Design of Biomaterials Based on Recombinant Analogs of Spider Silk Proteins</atitle><jtitle>Journal of neuroimmune pharmacology</jtitle><stitle>J Neuroimmune Pharmacol</stitle><addtitle>J Neuroimmune Pharmacol</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>4</volume><issue>1</issue><spage>17</spage><epage>27</epage><pages>17-27</pages><issn>1557-1890</issn><eissn>1557-1904</eissn><abstract>Spider dragline silk possesses impressive mechanical and biochemical properties. It is synthesized by a couple of major ampullate glands in spiders and comprises of two major structural proteins—spidroins 1 and 2. The relationship between structure and mechanical properties of spider silk is not well understood. Here, we modeled the complete process of the spider silk assembly using two new recombinant analogs of spidroins 1 and 2. The artificial genes sequence of the hydrophobic core regions of spidroin 1 and 2 have been designed using computer analysis of existing databases and mathematical modeling. Both proteins were expressed in Pichia pastoris and purified using a cation exchange chromatography. Despite the absence of hydrophilic N- and C-termini, both purified proteins spontaneously formed the nanofibrils and round micelles of about 1 μm in aqueous solutions. The electron microscopy study has revealed the helical structure of a nanofibril with a repeating motif of 40 nm. Using the electrospinning, the thin films with an antiparallel β-sheet structure were produced. In summary, we were able to obtain artificial structures with characteristics that are perspective for further biomedical applications, such as producing three-dimensional matrices for tissue engineering and drug delivery.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>18839314</pmid><doi>10.1007/s11481-008-9129-z</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1557-1890
ispartof Journal of neuroimmune pharmacology, 2009-03, Vol.4 (1), p.17-27
issn 1557-1890
1557-1904
language eng
recordid cdi_proquest_miscellaneous_66934874
source MEDLINE; SpringerLink Journals
subjects Animals
Araneae
Biocompatible Materials - chemistry
Biomedical and Life Sciences
Biomedicine
Cell Biology
Circular Dichroism
Immunology
Microscopy, Atomic Force
Microscopy, Electron, Scanning
Microscopy, Electron, Transmission
Models, Molecular
Models, Statistical
Nanotechnology
Neurosciences
Original Article
Pharmacology/Toxicology
Pichia pastoris
Proteins
Recombinant Proteins - chemistry
Silk
Silk - chemistry
Silk - genetics
Silk - ultrastructure
Solutions
Spectrometry, Mass, Electrospray Ionization
Spectrophotometry, Infrared
Spiders
Spiders - chemistry
Spiders - genetics
Tissue Engineering
Virology
title A Novel Model System for Design of Biomaterials Based on Recombinant Analogs of Spider Silk Proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A41%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Model%20System%20for%20Design%20of%20Biomaterials%20Based%20on%20Recombinant%20Analogs%20of%20Spider%20Silk%20Proteins&rft.jtitle=Journal%20of%20neuroimmune%20pharmacology&rft.au=Bogush,%20Vladimir%20G.&rft.date=2009-03-01&rft.volume=4&rft.issue=1&rft.spage=17&rft.epage=27&rft.pages=17-27&rft.issn=1557-1890&rft.eissn=1557-1904&rft_id=info:doi/10.1007/s11481-008-9129-z&rft_dat=%3Cproquest_cross%3E1950826142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1950826142&rft_id=info:pmid/18839314&rfr_iscdi=true