Surface EMG in advanced hand prosthetics
One of the major problems when dealing with highly dexterous, active hand prostheses is their control by the patient wearing them. With the advances in mechatronics, building prosthetic hands with multiple active degrees of freedom is realisable, but actively controlling the position and especially...
Gespeichert in:
Veröffentlicht in: | Biological cybernetics 2009, Vol.100 (1), p.35-47 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 47 |
---|---|
container_issue | 1 |
container_start_page | 35 |
container_title | Biological cybernetics |
container_volume | 100 |
creator | Castellini, Claudio van der Smagt, Patrick |
description | One of the major problems when dealing with highly dexterous, active hand prostheses is their control by the patient wearing them. With the advances in mechatronics, building prosthetic hands with multiple active degrees of freedom is realisable, but actively controlling the position and especially the exerted force of each finger cannot yet be done naturally. This paper deals with advanced robotic hand control via surface electromyography. Building upon recent results, we show that machine learning, together with a simple downsampling algorithm, can be effectively used to control on-line, in real time, finger position as well as finger force of a highly dexterous robotic hand. The system determines the type of grasp a human subject is willing to use, and the required amount of force involved, with a high degree of accuracy. This represents a remarkable improvement with respect to the state-of-the-art of feed-forward control of dexterous mechanical hands, and opens up a scenario in which amputees will be able to control hand prostheses in a much finer way than it has so far been possible. |
doi_str_mv | 10.1007/s00422-008-0278-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66931827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1896110881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-3befcb460951f4478892e0c4b6f453a39383c8fc782be43f26c1099881b2d24f3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlZ_gBdZPIiX1ckkm4-jlFqFigf1HLLZxG5pt7rpCv57U7ZQEMTTwMwz7zAPIecUbiiAvI0AHDEHUDmgVDk9IEPKWepICYdkCIxDThFgQE5iXACAxkIfkwHVQAslcUiuX7o2WOezydM0q5vMVl-2cb7K5rapso92HTdzv6ldPCVHwS6jP9vVEXm7n7yOH_LZ8_RxfDfLHedsk7PSB1dyAbqggXOplEYPjpci8IJZppliTgUnFZaes4DCUdBaKVpihTywEbnqc9Ptz87HjVnV0fnl0jZ-3UUjhGZUofwXZIJjoTQk8PIXuFh3bZOeMAhMFFAIliDaQy69HFsfzEdbr2z7bSiYrWzTyzZJttnKNjTtXOyCu3Llq_3Gzm4CsAdiGjXvvt1f_jv1B4Pehhc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203650563</pqid></control><display><type>article</type><title>Surface EMG in advanced hand prosthetics</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Castellini, Claudio ; van der Smagt, Patrick</creator><creatorcontrib>Castellini, Claudio ; van der Smagt, Patrick</creatorcontrib><description>One of the major problems when dealing with highly dexterous, active hand prostheses is their control by the patient wearing them. With the advances in mechatronics, building prosthetic hands with multiple active degrees of freedom is realisable, but actively controlling the position and especially the exerted force of each finger cannot yet be done naturally. This paper deals with advanced robotic hand control via surface electromyography. Building upon recent results, we show that machine learning, together with a simple downsampling algorithm, can be effectively used to control on-line, in real time, finger position as well as finger force of a highly dexterous robotic hand. The system determines the type of grasp a human subject is willing to use, and the required amount of force involved, with a high degree of accuracy. This represents a remarkable improvement with respect to the state-of-the-art of feed-forward control of dexterous mechanical hands, and opens up a scenario in which amputees will be able to control hand prostheses in a much finer way than it has so far been possible.</description><identifier>ISSN: 0340-1200</identifier><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/s00422-008-0278-1</identifier><identifier>PMID: 19015872</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial Limbs ; Bioinformatics ; Biomechanical Phenomena ; Biomedical and Life Sciences ; Biomedicine ; Complex Systems ; Computer Appl. in Life Sciences ; Cybernetics ; Electromyography - instrumentation ; Electromyography - methods ; Hand ; Hand Strength ; Humans ; Neural Networks (Computer) ; Neurobiology ; Neurosciences ; Original Paper ; Prostheses ; Prosthesis Design ; Rehabilitation ; Robotics</subject><ispartof>Biological cybernetics, 2009, Vol.100 (1), p.35-47</ispartof><rights>Springer-Verlag 2008</rights><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-3befcb460951f4478892e0c4b6f453a39383c8fc782be43f26c1099881b2d24f3</citedby><cites>FETCH-LOGICAL-c443t-3befcb460951f4478892e0c4b6f453a39383c8fc782be43f26c1099881b2d24f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00422-008-0278-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00422-008-0278-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19015872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castellini, Claudio</creatorcontrib><creatorcontrib>van der Smagt, Patrick</creatorcontrib><title>Surface EMG in advanced hand prosthetics</title><title>Biological cybernetics</title><addtitle>Biol Cybern</addtitle><addtitle>Biol Cybern</addtitle><description>One of the major problems when dealing with highly dexterous, active hand prostheses is their control by the patient wearing them. With the advances in mechatronics, building prosthetic hands with multiple active degrees of freedom is realisable, but actively controlling the position and especially the exerted force of each finger cannot yet be done naturally. This paper deals with advanced robotic hand control via surface electromyography. Building upon recent results, we show that machine learning, together with a simple downsampling algorithm, can be effectively used to control on-line, in real time, finger position as well as finger force of a highly dexterous robotic hand. The system determines the type of grasp a human subject is willing to use, and the required amount of force involved, with a high degree of accuracy. This represents a remarkable improvement with respect to the state-of-the-art of feed-forward control of dexterous mechanical hands, and opens up a scenario in which amputees will be able to control hand prostheses in a much finer way than it has so far been possible.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial Limbs</subject><subject>Bioinformatics</subject><subject>Biomechanical Phenomena</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Complex Systems</subject><subject>Computer Appl. in Life Sciences</subject><subject>Cybernetics</subject><subject>Electromyography - instrumentation</subject><subject>Electromyography - methods</subject><subject>Hand</subject><subject>Hand Strength</subject><subject>Humans</subject><subject>Neural Networks (Computer)</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Prostheses</subject><subject>Prosthesis Design</subject><subject>Rehabilitation</subject><subject>Robotics</subject><issn>0340-1200</issn><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE1LAzEQhoMotlZ_gBdZPIiX1ckkm4-jlFqFigf1HLLZxG5pt7rpCv57U7ZQEMTTwMwz7zAPIecUbiiAvI0AHDEHUDmgVDk9IEPKWepICYdkCIxDThFgQE5iXACAxkIfkwHVQAslcUiuX7o2WOezydM0q5vMVl-2cb7K5rapso92HTdzv6ldPCVHwS6jP9vVEXm7n7yOH_LZ8_RxfDfLHedsk7PSB1dyAbqggXOplEYPjpci8IJZppliTgUnFZaes4DCUdBaKVpihTywEbnqc9Ptz87HjVnV0fnl0jZ-3UUjhGZUofwXZIJjoTQk8PIXuFh3bZOeMAhMFFAIliDaQy69HFsfzEdbr2z7bSiYrWzTyzZJttnKNjTtXOyCu3Llq_3Gzm4CsAdiGjXvvt1f_jv1B4Pehhc</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Castellini, Claudio</creator><creator>van der Smagt, Patrick</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>2009</creationdate><title>Surface EMG in advanced hand prosthetics</title><author>Castellini, Claudio ; van der Smagt, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-3befcb460951f4478892e0c4b6f453a39383c8fc782be43f26c1099881b2d24f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial Limbs</topic><topic>Bioinformatics</topic><topic>Biomechanical Phenomena</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Complex Systems</topic><topic>Computer Appl. in Life Sciences</topic><topic>Cybernetics</topic><topic>Electromyography - instrumentation</topic><topic>Electromyography - methods</topic><topic>Hand</topic><topic>Hand Strength</topic><topic>Humans</topic><topic>Neural Networks (Computer)</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Prostheses</topic><topic>Prosthesis Design</topic><topic>Rehabilitation</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castellini, Claudio</creatorcontrib><creatorcontrib>van der Smagt, Patrick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castellini, Claudio</au><au>van der Smagt, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface EMG in advanced hand prosthetics</atitle><jtitle>Biological cybernetics</jtitle><stitle>Biol Cybern</stitle><addtitle>Biol Cybern</addtitle><date>2009</date><risdate>2009</risdate><volume>100</volume><issue>1</issue><spage>35</spage><epage>47</epage><pages>35-47</pages><issn>0340-1200</issn><eissn>1432-0770</eissn><abstract>One of the major problems when dealing with highly dexterous, active hand prostheses is their control by the patient wearing them. With the advances in mechatronics, building prosthetic hands with multiple active degrees of freedom is realisable, but actively controlling the position and especially the exerted force of each finger cannot yet be done naturally. This paper deals with advanced robotic hand control via surface electromyography. Building upon recent results, we show that machine learning, together with a simple downsampling algorithm, can be effectively used to control on-line, in real time, finger position as well as finger force of a highly dexterous robotic hand. The system determines the type of grasp a human subject is willing to use, and the required amount of force involved, with a high degree of accuracy. This represents a remarkable improvement with respect to the state-of-the-art of feed-forward control of dexterous mechanical hands, and opens up a scenario in which amputees will be able to control hand prostheses in a much finer way than it has so far been possible.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>19015872</pmid><doi>10.1007/s00422-008-0278-1</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-1200 |
ispartof | Biological cybernetics, 2009, Vol.100 (1), p.35-47 |
issn | 0340-1200 1432-0770 |
language | eng |
recordid | cdi_proquest_miscellaneous_66931827 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial Intelligence Artificial Limbs Bioinformatics Biomechanical Phenomena Biomedical and Life Sciences Biomedicine Complex Systems Computer Appl. in Life Sciences Cybernetics Electromyography - instrumentation Electromyography - methods Hand Hand Strength Humans Neural Networks (Computer) Neurobiology Neurosciences Original Paper Prostheses Prosthesis Design Rehabilitation Robotics |
title | Surface EMG in advanced hand prosthetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A46%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20EMG%20in%20advanced%20hand%20prosthetics&rft.jtitle=Biological%20cybernetics&rft.au=Castellini,%20Claudio&rft.date=2009&rft.volume=100&rft.issue=1&rft.spage=35&rft.epage=47&rft.pages=35-47&rft.issn=0340-1200&rft.eissn=1432-0770&rft_id=info:doi/10.1007/s00422-008-0278-1&rft_dat=%3Cproquest_cross%3E1896110881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203650563&rft_id=info:pmid/19015872&rfr_iscdi=true |