Surface EMG in advanced hand prosthetics

One of the major problems when dealing with highly dexterous, active hand prostheses is their control by the patient wearing them. With the advances in mechatronics, building prosthetic hands with multiple active degrees of freedom is realisable, but actively controlling the position and especially...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological cybernetics 2009, Vol.100 (1), p.35-47
Hauptverfasser: Castellini, Claudio, van der Smagt, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue 1
container_start_page 35
container_title Biological cybernetics
container_volume 100
creator Castellini, Claudio
van der Smagt, Patrick
description One of the major problems when dealing with highly dexterous, active hand prostheses is their control by the patient wearing them. With the advances in mechatronics, building prosthetic hands with multiple active degrees of freedom is realisable, but actively controlling the position and especially the exerted force of each finger cannot yet be done naturally. This paper deals with advanced robotic hand control via surface electromyography. Building upon recent results, we show that machine learning, together with a simple downsampling algorithm, can be effectively used to control on-line, in real time, finger position as well as finger force of a highly dexterous robotic hand. The system determines the type of grasp a human subject is willing to use, and the required amount of force involved, with a high degree of accuracy. This represents a remarkable improvement with respect to the state-of-the-art of feed-forward control of dexterous mechanical hands, and opens up a scenario in which amputees will be able to control hand prostheses in a much finer way than it has so far been possible.
doi_str_mv 10.1007/s00422-008-0278-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66931827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1896110881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-3befcb460951f4478892e0c4b6f453a39383c8fc782be43f26c1099881b2d24f3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlZ_gBdZPIiX1ckkm4-jlFqFigf1HLLZxG5pt7rpCv57U7ZQEMTTwMwz7zAPIecUbiiAvI0AHDEHUDmgVDk9IEPKWepICYdkCIxDThFgQE5iXACAxkIfkwHVQAslcUiuX7o2WOezydM0q5vMVl-2cb7K5rapso92HTdzv6ldPCVHwS6jP9vVEXm7n7yOH_LZ8_RxfDfLHedsk7PSB1dyAbqggXOplEYPjpci8IJZppliTgUnFZaes4DCUdBaKVpihTywEbnqc9Ptz87HjVnV0fnl0jZ-3UUjhGZUofwXZIJjoTQk8PIXuFh3bZOeMAhMFFAIliDaQy69HFsfzEdbr2z7bSiYrWzTyzZJttnKNjTtXOyCu3Llq_3Gzm4CsAdiGjXvvt1f_jv1B4Pehhc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203650563</pqid></control><display><type>article</type><title>Surface EMG in advanced hand prosthetics</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Castellini, Claudio ; van der Smagt, Patrick</creator><creatorcontrib>Castellini, Claudio ; van der Smagt, Patrick</creatorcontrib><description>One of the major problems when dealing with highly dexterous, active hand prostheses is their control by the patient wearing them. With the advances in mechatronics, building prosthetic hands with multiple active degrees of freedom is realisable, but actively controlling the position and especially the exerted force of each finger cannot yet be done naturally. This paper deals with advanced robotic hand control via surface electromyography. Building upon recent results, we show that machine learning, together with a simple downsampling algorithm, can be effectively used to control on-line, in real time, finger position as well as finger force of a highly dexterous robotic hand. The system determines the type of grasp a human subject is willing to use, and the required amount of force involved, with a high degree of accuracy. This represents a remarkable improvement with respect to the state-of-the-art of feed-forward control of dexterous mechanical hands, and opens up a scenario in which amputees will be able to control hand prostheses in a much finer way than it has so far been possible.</description><identifier>ISSN: 0340-1200</identifier><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/s00422-008-0278-1</identifier><identifier>PMID: 19015872</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial Limbs ; Bioinformatics ; Biomechanical Phenomena ; Biomedical and Life Sciences ; Biomedicine ; Complex Systems ; Computer Appl. in Life Sciences ; Cybernetics ; Electromyography - instrumentation ; Electromyography - methods ; Hand ; Hand Strength ; Humans ; Neural Networks (Computer) ; Neurobiology ; Neurosciences ; Original Paper ; Prostheses ; Prosthesis Design ; Rehabilitation ; Robotics</subject><ispartof>Biological cybernetics, 2009, Vol.100 (1), p.35-47</ispartof><rights>Springer-Verlag 2008</rights><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-3befcb460951f4478892e0c4b6f453a39383c8fc782be43f26c1099881b2d24f3</citedby><cites>FETCH-LOGICAL-c443t-3befcb460951f4478892e0c4b6f453a39383c8fc782be43f26c1099881b2d24f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00422-008-0278-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00422-008-0278-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19015872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castellini, Claudio</creatorcontrib><creatorcontrib>van der Smagt, Patrick</creatorcontrib><title>Surface EMG in advanced hand prosthetics</title><title>Biological cybernetics</title><addtitle>Biol Cybern</addtitle><addtitle>Biol Cybern</addtitle><description>One of the major problems when dealing with highly dexterous, active hand prostheses is their control by the patient wearing them. With the advances in mechatronics, building prosthetic hands with multiple active degrees of freedom is realisable, but actively controlling the position and especially the exerted force of each finger cannot yet be done naturally. This paper deals with advanced robotic hand control via surface electromyography. Building upon recent results, we show that machine learning, together with a simple downsampling algorithm, can be effectively used to control on-line, in real time, finger position as well as finger force of a highly dexterous robotic hand. The system determines the type of grasp a human subject is willing to use, and the required amount of force involved, with a high degree of accuracy. This represents a remarkable improvement with respect to the state-of-the-art of feed-forward control of dexterous mechanical hands, and opens up a scenario in which amputees will be able to control hand prostheses in a much finer way than it has so far been possible.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial Limbs</subject><subject>Bioinformatics</subject><subject>Biomechanical Phenomena</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Complex Systems</subject><subject>Computer Appl. in Life Sciences</subject><subject>Cybernetics</subject><subject>Electromyography - instrumentation</subject><subject>Electromyography - methods</subject><subject>Hand</subject><subject>Hand Strength</subject><subject>Humans</subject><subject>Neural Networks (Computer)</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Prostheses</subject><subject>Prosthesis Design</subject><subject>Rehabilitation</subject><subject>Robotics</subject><issn>0340-1200</issn><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE1LAzEQhoMotlZ_gBdZPIiX1ckkm4-jlFqFigf1HLLZxG5pt7rpCv57U7ZQEMTTwMwz7zAPIecUbiiAvI0AHDEHUDmgVDk9IEPKWepICYdkCIxDThFgQE5iXACAxkIfkwHVQAslcUiuX7o2WOezydM0q5vMVl-2cb7K5rapso92HTdzv6ldPCVHwS6jP9vVEXm7n7yOH_LZ8_RxfDfLHedsk7PSB1dyAbqggXOplEYPjpci8IJZppliTgUnFZaes4DCUdBaKVpihTywEbnqc9Ptz87HjVnV0fnl0jZ-3UUjhGZUofwXZIJjoTQk8PIXuFh3bZOeMAhMFFAIliDaQy69HFsfzEdbr2z7bSiYrWzTyzZJttnKNjTtXOyCu3Llq_3Gzm4CsAdiGjXvvt1f_jv1B4Pehhc</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Castellini, Claudio</creator><creator>van der Smagt, Patrick</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>2009</creationdate><title>Surface EMG in advanced hand prosthetics</title><author>Castellini, Claudio ; van der Smagt, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-3befcb460951f4478892e0c4b6f453a39383c8fc782be43f26c1099881b2d24f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial Limbs</topic><topic>Bioinformatics</topic><topic>Biomechanical Phenomena</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Complex Systems</topic><topic>Computer Appl. in Life Sciences</topic><topic>Cybernetics</topic><topic>Electromyography - instrumentation</topic><topic>Electromyography - methods</topic><topic>Hand</topic><topic>Hand Strength</topic><topic>Humans</topic><topic>Neural Networks (Computer)</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Prostheses</topic><topic>Prosthesis Design</topic><topic>Rehabilitation</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castellini, Claudio</creatorcontrib><creatorcontrib>van der Smagt, Patrick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castellini, Claudio</au><au>van der Smagt, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface EMG in advanced hand prosthetics</atitle><jtitle>Biological cybernetics</jtitle><stitle>Biol Cybern</stitle><addtitle>Biol Cybern</addtitle><date>2009</date><risdate>2009</risdate><volume>100</volume><issue>1</issue><spage>35</spage><epage>47</epage><pages>35-47</pages><issn>0340-1200</issn><eissn>1432-0770</eissn><abstract>One of the major problems when dealing with highly dexterous, active hand prostheses is their control by the patient wearing them. With the advances in mechatronics, building prosthetic hands with multiple active degrees of freedom is realisable, but actively controlling the position and especially the exerted force of each finger cannot yet be done naturally. This paper deals with advanced robotic hand control via surface electromyography. Building upon recent results, we show that machine learning, together with a simple downsampling algorithm, can be effectively used to control on-line, in real time, finger position as well as finger force of a highly dexterous robotic hand. The system determines the type of grasp a human subject is willing to use, and the required amount of force involved, with a high degree of accuracy. This represents a remarkable improvement with respect to the state-of-the-art of feed-forward control of dexterous mechanical hands, and opens up a scenario in which amputees will be able to control hand prostheses in a much finer way than it has so far been possible.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>19015872</pmid><doi>10.1007/s00422-008-0278-1</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0340-1200
ispartof Biological cybernetics, 2009, Vol.100 (1), p.35-47
issn 0340-1200
1432-0770
language eng
recordid cdi_proquest_miscellaneous_66931827
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial Intelligence
Artificial Limbs
Bioinformatics
Biomechanical Phenomena
Biomedical and Life Sciences
Biomedicine
Complex Systems
Computer Appl. in Life Sciences
Cybernetics
Electromyography - instrumentation
Electromyography - methods
Hand
Hand Strength
Humans
Neural Networks (Computer)
Neurobiology
Neurosciences
Original Paper
Prostheses
Prosthesis Design
Rehabilitation
Robotics
title Surface EMG in advanced hand prosthetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A46%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20EMG%20in%20advanced%20hand%20prosthetics&rft.jtitle=Biological%20cybernetics&rft.au=Castellini,%20Claudio&rft.date=2009&rft.volume=100&rft.issue=1&rft.spage=35&rft.epage=47&rft.pages=35-47&rft.issn=0340-1200&rft.eissn=1432-0770&rft_id=info:doi/10.1007/s00422-008-0278-1&rft_dat=%3Cproquest_cross%3E1896110881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203650563&rft_id=info:pmid/19015872&rfr_iscdi=true