From behavior to fictive feeding: Anatomy, innervation and activation pattern of pharyngeal muscles of Calliphora vicina 3rd instar larvae

A description of the muscles and nerves involved in feeding of larval Calliphora vicina is given as a prerequisite to establish fictive feeding patterns recorded from the isolated central nervous system. Feeding Diptera larvae show a repetitive sequence of pro- and retraction of the cephalopharyngea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of insect physiology 2009-03, Vol.55 (3), p.218-230
Hauptverfasser: Schoofs, Andreas, Niederegger, Senta, Spieß, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A description of the muscles and nerves involved in feeding of larval Calliphora vicina is given as a prerequisite to establish fictive feeding patterns recorded from the isolated central nervous system. Feeding Diptera larvae show a repetitive sequence of pro- and retraction of the cephalopharyngeal skeleton (CPS), elevation and depression of the mouth hooks and food ingestion. The corresponding pharyngeal muscles are protractors, mouth hook elevators and depressors, the labial retractor and cibarial dilator muscles. These muscles are innervated by the prothoracic accessory nerve (PaN), maxillary nerve (MN) and antennal nerve (AN) as shown electrophysiologically by recording action potentials from the respective nerve that correlate to post-synaptic potentials on the muscles. All three nerves show considerably more complex branching patterns than indicated in the literature. Extracellular recordings from the stumps of PaN, MN and AN connected to an isolated CNS show spontaneous rhythmic motor patterns that reflect the feeding sequence in intact larvae. Variability of the feeding pattern observed in behavioral experiments is also evident from the level of motor output from an isolated CNS. The data obtained from Calliphora will facilitate electrophysiological investigations dealing with the genetic background of feeding behavior in Drosophila larvae.
ISSN:0022-1910
1879-1611
DOI:10.1016/j.jinsphys.2008.11.011