Hildebrand and Hansen solubility parameters from Molecular Dynamics with applications to electronic nose polymer sensors
We introduce the Cohesive Energy Density (CED) method, a multiple sampling Molecular Dynamics computer simulation procedure that may offer higher consistency in the estimation of Hildebrand and Hansen solubility parameters. The use of a multiple sampling technique, combined with a simple but consist...
Gespeichert in:
Veröffentlicht in: | Journal of computational chemistry 2004-11, Vol.25 (15), p.1814-1826 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1826 |
---|---|
container_issue | 15 |
container_start_page | 1814 |
container_title | Journal of computational chemistry |
container_volume | 25 |
creator | Belmares, M. Blanco, M. Goddard III, W. A. Ross, R. B. Caldwell, G. Chou, S.-H. Pham, J. Olofson, P. M. Thomas, Cristina |
description | We introduce the Cohesive Energy Density (CED) method, a multiple sampling Molecular Dynamics computer simulation procedure that may offer higher consistency in the estimation of Hildebrand and Hansen solubility parameters. The use of a multiple sampling technique, combined with a simple but consistent molecular force field and quantum mechanically determined atomic charges, allows for the precise determination of solubility parameters in a systematic way (σ = 0.4 hildebrands). The CED method yields first‐principles Hildebrand parameter predictions in good agreement with experiment [root‐mean‐square (rms) = 1.1 hildebrands]. We apply the CED method to model the Caltech electronic nose, an array of 20 polymer sensors. Sensors are built with conducting leads connected through thin‐film polymers loaded with carbon black. Odorant detection relies on a change in electric resistivity of the polymer film as function of the amount of swelling caused by the odorant compound. The amount of swelling depends upon the chemical composition of the polymer and the odorant molecule. The pattern is unique, and unambiguously identifies the compound. Experimentally determined changes in relative resistivity of seven polymer sensors upon exposure to 24 solvent vapors were modeled with the CED estimated Hansen solubility components. Predictions of polymer sensor responses result in Pearson R2 coefficients between 0.82 and 0.99. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1814–1826, 2004 |
doi_str_mv | 10.1002/jcc.20098 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66924771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66924771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3868-9fe7a564194ea3646482e49fcf103e4b0ae17b955614860612fda586a554b4d3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EotvCgT-ALA5IPaS144_YR7RAF1rKgQoQF8txJsKLE6d2ojb_niy7gITESKO5PPNoNC9Czyg5o4SU51vnzkpCtHqAVpRoWWhVfX2IVoTqslBS0CN0nPOWEMKE5I_RERVM6UrQFbrf-NBAnWzf4F1vbJ-hxzmGqfbBjzMebLIdjJAyblPs8IcYwE3BJvx67m3nXcZ3fvyO7TAE7-zoY5_xGDEs2Jhi7x3uYwY8xDB3kPCizzHlJ-hRa0OGp4d5gm7evrlZb4qrjxfv1q-uCseUVIVuobLL0VRzsExyyVUJXLeupYQBr4kFWtVaCEm5kkTSsm2sUNIKwWvesBP0cq8dUrydII-m89lBCLaHOGUjpS55VdEFfPEPuI1T6pfTTLkrxoVeoNM95FLMOUFrhuQ7m2ZDidlFYZYozK8oFvb5QTjVHTR_ycPvF-B8D9z5APP_Teb9ev1bWew3fB7h_s-GTT-MrFglzJfrC8M_XX-jl5-puWQ_Aeguo0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222223459</pqid></control><display><type>article</type><title>Hildebrand and Hansen solubility parameters from Molecular Dynamics with applications to electronic nose polymer sensors</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Belmares, M. ; Blanco, M. ; Goddard III, W. A. ; Ross, R. B. ; Caldwell, G. ; Chou, S.-H. ; Pham, J. ; Olofson, P. M. ; Thomas, Cristina</creator><creatorcontrib>Belmares, M. ; Blanco, M. ; Goddard III, W. A. ; Ross, R. B. ; Caldwell, G. ; Chou, S.-H. ; Pham, J. ; Olofson, P. M. ; Thomas, Cristina</creatorcontrib><description>We introduce the Cohesive Energy Density (CED) method, a multiple sampling Molecular Dynamics computer simulation procedure that may offer higher consistency in the estimation of Hildebrand and Hansen solubility parameters. The use of a multiple sampling technique, combined with a simple but consistent molecular force field and quantum mechanically determined atomic charges, allows for the precise determination of solubility parameters in a systematic way (σ = 0.4 hildebrands). The CED method yields first‐principles Hildebrand parameter predictions in good agreement with experiment [root‐mean‐square (rms) = 1.1 hildebrands]. We apply the CED method to model the Caltech electronic nose, an array of 20 polymer sensors. Sensors are built with conducting leads connected through thin‐film polymers loaded with carbon black. Odorant detection relies on a change in electric resistivity of the polymer film as function of the amount of swelling caused by the odorant compound. The amount of swelling depends upon the chemical composition of the polymer and the odorant molecule. The pattern is unique, and unambiguously identifies the compound. Experimentally determined changes in relative resistivity of seven polymer sensors upon exposure to 24 solvent vapors were modeled with the CED estimated Hansen solubility components. Predictions of polymer sensor responses result in Pearson R2 coefficients between 0.82 and 0.99. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1814–1826, 2004</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.20098</identifier><identifier>PMID: 15389751</identifier><identifier>CODEN: JCCHDD</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Algorithms ; cohesive energy ; Computer Simulation ; electronic nose ; Hansen solubility parameters ; Models, Chemical ; Molecular biology ; molecular dynamics method ; Parameter estimation ; Polymers ; Polymers - chemistry ; Sensors ; Solubility ; Thermodynamics</subject><ispartof>Journal of computational chemistry, 2004-11, Vol.25 (15), p.1814-1826</ispartof><rights>Copyright © 2004 Wiley Periodicals, Inc.</rights><rights>Copyright 2004 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Nov 30, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3868-9fe7a564194ea3646482e49fcf103e4b0ae17b955614860612fda586a554b4d3</citedby><cites>FETCH-LOGICAL-c3868-9fe7a564194ea3646482e49fcf103e4b0ae17b955614860612fda586a554b4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.20098$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.20098$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15389751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Belmares, M.</creatorcontrib><creatorcontrib>Blanco, M.</creatorcontrib><creatorcontrib>Goddard III, W. A.</creatorcontrib><creatorcontrib>Ross, R. B.</creatorcontrib><creatorcontrib>Caldwell, G.</creatorcontrib><creatorcontrib>Chou, S.-H.</creatorcontrib><creatorcontrib>Pham, J.</creatorcontrib><creatorcontrib>Olofson, P. M.</creatorcontrib><creatorcontrib>Thomas, Cristina</creatorcontrib><title>Hildebrand and Hansen solubility parameters from Molecular Dynamics with applications to electronic nose polymer sensors</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>We introduce the Cohesive Energy Density (CED) method, a multiple sampling Molecular Dynamics computer simulation procedure that may offer higher consistency in the estimation of Hildebrand and Hansen solubility parameters. The use of a multiple sampling technique, combined with a simple but consistent molecular force field and quantum mechanically determined atomic charges, allows for the precise determination of solubility parameters in a systematic way (σ = 0.4 hildebrands). The CED method yields first‐principles Hildebrand parameter predictions in good agreement with experiment [root‐mean‐square (rms) = 1.1 hildebrands]. We apply the CED method to model the Caltech electronic nose, an array of 20 polymer sensors. Sensors are built with conducting leads connected through thin‐film polymers loaded with carbon black. Odorant detection relies on a change in electric resistivity of the polymer film as function of the amount of swelling caused by the odorant compound. The amount of swelling depends upon the chemical composition of the polymer and the odorant molecule. The pattern is unique, and unambiguously identifies the compound. Experimentally determined changes in relative resistivity of seven polymer sensors upon exposure to 24 solvent vapors were modeled with the CED estimated Hansen solubility components. Predictions of polymer sensor responses result in Pearson R2 coefficients between 0.82 and 0.99. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1814–1826, 2004</description><subject>Algorithms</subject><subject>cohesive energy</subject><subject>Computer Simulation</subject><subject>electronic nose</subject><subject>Hansen solubility parameters</subject><subject>Models, Chemical</subject><subject>Molecular biology</subject><subject>molecular dynamics method</subject><subject>Parameter estimation</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Sensors</subject><subject>Solubility</subject><subject>Thermodynamics</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1v1DAQhi0EotvCgT-ALA5IPaS144_YR7RAF1rKgQoQF8txJsKLE6d2ojb_niy7gITESKO5PPNoNC9Czyg5o4SU51vnzkpCtHqAVpRoWWhVfX2IVoTqslBS0CN0nPOWEMKE5I_RERVM6UrQFbrf-NBAnWzf4F1vbJ-hxzmGqfbBjzMebLIdjJAyblPs8IcYwE3BJvx67m3nXcZ3fvyO7TAE7-zoY5_xGDEs2Jhi7x3uYwY8xDB3kPCizzHlJ-hRa0OGp4d5gm7evrlZb4qrjxfv1q-uCseUVIVuobLL0VRzsExyyVUJXLeupYQBr4kFWtVaCEm5kkTSsm2sUNIKwWvesBP0cq8dUrydII-m89lBCLaHOGUjpS55VdEFfPEPuI1T6pfTTLkrxoVeoNM95FLMOUFrhuQ7m2ZDidlFYZYozK8oFvb5QTjVHTR_ycPvF-B8D9z5APP_Teb9ev1bWew3fB7h_s-GTT-MrFglzJfrC8M_XX-jl5-puWQ_Aeguo0I</recordid><startdate>20041130</startdate><enddate>20041130</enddate><creator>Belmares, M.</creator><creator>Blanco, M.</creator><creator>Goddard III, W. A.</creator><creator>Ross, R. B.</creator><creator>Caldwell, G.</creator><creator>Chou, S.-H.</creator><creator>Pham, J.</creator><creator>Olofson, P. M.</creator><creator>Thomas, Cristina</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>20041130</creationdate><title>Hildebrand and Hansen solubility parameters from Molecular Dynamics with applications to electronic nose polymer sensors</title><author>Belmares, M. ; Blanco, M. ; Goddard III, W. A. ; Ross, R. B. ; Caldwell, G. ; Chou, S.-H. ; Pham, J. ; Olofson, P. M. ; Thomas, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3868-9fe7a564194ea3646482e49fcf103e4b0ae17b955614860612fda586a554b4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>cohesive energy</topic><topic>Computer Simulation</topic><topic>electronic nose</topic><topic>Hansen solubility parameters</topic><topic>Models, Chemical</topic><topic>Molecular biology</topic><topic>molecular dynamics method</topic><topic>Parameter estimation</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Sensors</topic><topic>Solubility</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belmares, M.</creatorcontrib><creatorcontrib>Blanco, M.</creatorcontrib><creatorcontrib>Goddard III, W. A.</creatorcontrib><creatorcontrib>Ross, R. B.</creatorcontrib><creatorcontrib>Caldwell, G.</creatorcontrib><creatorcontrib>Chou, S.-H.</creatorcontrib><creatorcontrib>Pham, J.</creatorcontrib><creatorcontrib>Olofson, P. M.</creatorcontrib><creatorcontrib>Thomas, Cristina</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belmares, M.</au><au>Blanco, M.</au><au>Goddard III, W. A.</au><au>Ross, R. B.</au><au>Caldwell, G.</au><au>Chou, S.-H.</au><au>Pham, J.</au><au>Olofson, P. M.</au><au>Thomas, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hildebrand and Hansen solubility parameters from Molecular Dynamics with applications to electronic nose polymer sensors</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>2004-11-30</date><risdate>2004</risdate><volume>25</volume><issue>15</issue><spage>1814</spage><epage>1826</epage><pages>1814-1826</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><coden>JCCHDD</coden><abstract>We introduce the Cohesive Energy Density (CED) method, a multiple sampling Molecular Dynamics computer simulation procedure that may offer higher consistency in the estimation of Hildebrand and Hansen solubility parameters. The use of a multiple sampling technique, combined with a simple but consistent molecular force field and quantum mechanically determined atomic charges, allows for the precise determination of solubility parameters in a systematic way (σ = 0.4 hildebrands). The CED method yields first‐principles Hildebrand parameter predictions in good agreement with experiment [root‐mean‐square (rms) = 1.1 hildebrands]. We apply the CED method to model the Caltech electronic nose, an array of 20 polymer sensors. Sensors are built with conducting leads connected through thin‐film polymers loaded with carbon black. Odorant detection relies on a change in electric resistivity of the polymer film as function of the amount of swelling caused by the odorant compound. The amount of swelling depends upon the chemical composition of the polymer and the odorant molecule. The pattern is unique, and unambiguously identifies the compound. Experimentally determined changes in relative resistivity of seven polymer sensors upon exposure to 24 solvent vapors were modeled with the CED estimated Hansen solubility components. Predictions of polymer sensor responses result in Pearson R2 coefficients between 0.82 and 0.99. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1814–1826, 2004</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><pmid>15389751</pmid><doi>10.1002/jcc.20098</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0192-8651 |
ispartof | Journal of computational chemistry, 2004-11, Vol.25 (15), p.1814-1826 |
issn | 0192-8651 1096-987X |
language | eng |
recordid | cdi_proquest_miscellaneous_66924771 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms cohesive energy Computer Simulation electronic nose Hansen solubility parameters Models, Chemical Molecular biology molecular dynamics method Parameter estimation Polymers Polymers - chemistry Sensors Solubility Thermodynamics |
title | Hildebrand and Hansen solubility parameters from Molecular Dynamics with applications to electronic nose polymer sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hildebrand%20and%20Hansen%20solubility%20parameters%20from%20Molecular%20Dynamics%20with%20applications%20to%20electronic%20nose%20polymer%20sensors&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Belmares,%20M.&rft.date=2004-11-30&rft.volume=25&rft.issue=15&rft.spage=1814&rft.epage=1826&rft.pages=1814-1826&rft.issn=0192-8651&rft.eissn=1096-987X&rft.coden=JCCHDD&rft_id=info:doi/10.1002/jcc.20098&rft_dat=%3Cproquest_cross%3E66924771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222223459&rft_id=info:pmid/15389751&rfr_iscdi=true |