Characterisation of a mobile protein-binding epitope in the translocation domain of colicin E9
The 61 kDa colicin E9 protein toxin enters the cytoplasm of susceptible cells by interacting with outer membrane and periplasmic helper proteins, and kills them by hydrolysing their DNA. The membrane translocation function is located in the N-terminal domain of the colicin, with a key signal sequenc...
Gespeichert in:
Veröffentlicht in: | Journal of biomolecular NMR 2004-09, Vol.30 (1), p.81-96 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 96 |
---|---|
container_issue | 1 |
container_start_page | 81 |
container_title | Journal of biomolecular NMR |
container_volume | 30 |
creator | Macdonald, Colin J Tozawa, Kaeko Collins, Emily S Penfold, Christopher N James, Richard Kleanthous, Colin Clayden, Nigel J Moore, Geoffrey R |
description | The 61 kDa colicin E9 protein toxin enters the cytoplasm of susceptible cells by interacting with outer membrane and periplasmic helper proteins, and kills them by hydrolysing their DNA. The membrane translocation function is located in the N-terminal domain of the colicin, with a key signal sequence being a pentapeptide region that governs the interaction with the helper protein TolB (the TolB box). Previous NMR studies (Collins et al., 2002 J. Mol. Biol. 318, 787-804) have shown that the N-terminal 83 residues of colicin E9, which includes the TolB box, is largely unstructured and highly flexible. In order to further define the properties of this region we have studied a fusion protein containing residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight-residue linking sequence. 53 of the expected 58 backbone NH resonances for the first 61 residues and all of the expected 7 backbone NH resonances of the linking sequence were assigned with 3D (1)H-(13)C-(15)N NMR experiments, and the backbone dynamics of these regions investigated through measurement of (1)H-(15)N relaxation properties. Reduced spectral density mapping, extended Lipari-Szabo modelling, and fitting backbone R(2) relaxation rates to a polymer dynamics model identifies three clusters of interacting residues, each containing a tryptophan. Each of these clusters is perturbed by TolB binding to the intact colicin, showing that the significant region for TolB binding extends beyond the recognized five amino acids of the TolB box and demonstrating that the binding epitope for TolB involves a considerable degree of order within an otherwise disordered and flexible domain. Abbreviations : Im9, the immunity protein for colicin E9; E9 DNase, the endonuclease domain of colicin E9; HSQC, heteronuclear single quantum coherence; ppm, parts per million; DSS, 2,2-(dimethylsilyl)propanesulfonic acid; TSP, sodium 3-trimethylsilypropionate; T(1 - 61)-DNase fusion protein, residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight residue thrombin cleavage sequence. |
doi_str_mv | 10.1023/B:JNMR.0000042963.71790.19 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66916760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66916760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-6217ee5a857d109c99e7f434c91d38cf4ccf333222d3feab1a13c6fe3cd4fd233</originalsourceid><addsrcrecordid>eNqFkU1vGyEQhlHVqHbT_IVq5UNv6wLDwpJbbSVNonxIVXINwuxQE-0uLqwP-fdZf0iReslcGInnZQY9hMwYnTPK4efi_Ob-7s-c7kpwLWGumNLjpf5EpqxSUFaUss9kSjWvSq6gnpCvOb-MuK65_EImrBIVF6Cm5Hm5tsm6AVPIdgixL6IvbNHFVWix2KQ4YOjLVeib0P8tcBOGuMEi9MWwxmJIts9tdIdgEzsb9nkX2-DG9kJ_IyfethnPjucpebq8eFxelbcPv6-Xv25LBwqGUnKmECtbV6phVDutUXkBwmnWQO28cM4DAOe8AY92xSwDJz2Ca4RvOMAp-XF4d9z43xbzYLqQHbat7TFus5FSM6kk_RBkimtF9-DsP_AlblM_fsLUoITkQuyg8wPkUsw5oTebFDqbXg2jZufKLMzOlXl3ZfauDNNj-PtxwnbVYfMePcqBN2WIkII</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>837462440</pqid></control><display><type>article</type><title>Characterisation of a mobile protein-binding epitope in the translocation domain of colicin E9</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Macdonald, Colin J ; Tozawa, Kaeko ; Collins, Emily S ; Penfold, Christopher N ; James, Richard ; Kleanthous, Colin ; Clayden, Nigel J ; Moore, Geoffrey R</creator><creatorcontrib>Macdonald, Colin J ; Tozawa, Kaeko ; Collins, Emily S ; Penfold, Christopher N ; James, Richard ; Kleanthous, Colin ; Clayden, Nigel J ; Moore, Geoffrey R</creatorcontrib><description>The 61 kDa colicin E9 protein toxin enters the cytoplasm of susceptible cells by interacting with outer membrane and periplasmic helper proteins, and kills them by hydrolysing their DNA. The membrane translocation function is located in the N-terminal domain of the colicin, with a key signal sequence being a pentapeptide region that governs the interaction with the helper protein TolB (the TolB box). Previous NMR studies (Collins et al., 2002 J. Mol. Biol. 318, 787-804) have shown that the N-terminal 83 residues of colicin E9, which includes the TolB box, is largely unstructured and highly flexible. In order to further define the properties of this region we have studied a fusion protein containing residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight-residue linking sequence. 53 of the expected 58 backbone NH resonances for the first 61 residues and all of the expected 7 backbone NH resonances of the linking sequence were assigned with 3D (1)H-(13)C-(15)N NMR experiments, and the backbone dynamics of these regions investigated through measurement of (1)H-(15)N relaxation properties. Reduced spectral density mapping, extended Lipari-Szabo modelling, and fitting backbone R(2) relaxation rates to a polymer dynamics model identifies three clusters of interacting residues, each containing a tryptophan. Each of these clusters is perturbed by TolB binding to the intact colicin, showing that the significant region for TolB binding extends beyond the recognized five amino acids of the TolB box and demonstrating that the binding epitope for TolB involves a considerable degree of order within an otherwise disordered and flexible domain. Abbreviations : Im9, the immunity protein for colicin E9; E9 DNase, the endonuclease domain of colicin E9; HSQC, heteronuclear single quantum coherence; ppm, parts per million; DSS, 2,2-(dimethylsilyl)propanesulfonic acid; TSP, sodium 3-trimethylsilypropionate; T(1 - 61)-DNase fusion protein, residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight residue thrombin cleavage sequence.</description><identifier>ISSN: 0925-2738</identifier><identifier>EISSN: 1573-5001</identifier><identifier>DOI: 10.1023/B:JNMR.0000042963.71790.19</identifier><identifier>PMID: 15452437</identifier><language>eng</language><publisher>Netherlands: Springer Nature B.V</publisher><subject>Amino Acid Sequence ; Amino acids ; Binding Sites ; Biological Transport, Active ; Carbon Isotopes ; Colicins - chemistry ; Colicins - genetics ; Colicins - metabolism ; Deoxyribonucleases - metabolism ; Epitopes - metabolism ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Molecular Weight ; Nitrogen Isotopes ; Nuclear Magnetic Resonance, Biomolecular ; Polymers ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Proteins ; Quantum Theory ; Residues ; Toxins ; Translocation</subject><ispartof>Journal of biomolecular NMR, 2004-09, Vol.30 (1), p.81-96</ispartof><rights>Kluwer Academic Publishers 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-6217ee5a857d109c99e7f434c91d38cf4ccf333222d3feab1a13c6fe3cd4fd233</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15452437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Macdonald, Colin J</creatorcontrib><creatorcontrib>Tozawa, Kaeko</creatorcontrib><creatorcontrib>Collins, Emily S</creatorcontrib><creatorcontrib>Penfold, Christopher N</creatorcontrib><creatorcontrib>James, Richard</creatorcontrib><creatorcontrib>Kleanthous, Colin</creatorcontrib><creatorcontrib>Clayden, Nigel J</creatorcontrib><creatorcontrib>Moore, Geoffrey R</creatorcontrib><title>Characterisation of a mobile protein-binding epitope in the translocation domain of colicin E9</title><title>Journal of biomolecular NMR</title><addtitle>J Biomol NMR</addtitle><description>The 61 kDa colicin E9 protein toxin enters the cytoplasm of susceptible cells by interacting with outer membrane and periplasmic helper proteins, and kills them by hydrolysing their DNA. The membrane translocation function is located in the N-terminal domain of the colicin, with a key signal sequence being a pentapeptide region that governs the interaction with the helper protein TolB (the TolB box). Previous NMR studies (Collins et al., 2002 J. Mol. Biol. 318, 787-804) have shown that the N-terminal 83 residues of colicin E9, which includes the TolB box, is largely unstructured and highly flexible. In order to further define the properties of this region we have studied a fusion protein containing residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight-residue linking sequence. 53 of the expected 58 backbone NH resonances for the first 61 residues and all of the expected 7 backbone NH resonances of the linking sequence were assigned with 3D (1)H-(13)C-(15)N NMR experiments, and the backbone dynamics of these regions investigated through measurement of (1)H-(15)N relaxation properties. Reduced spectral density mapping, extended Lipari-Szabo modelling, and fitting backbone R(2) relaxation rates to a polymer dynamics model identifies three clusters of interacting residues, each containing a tryptophan. Each of these clusters is perturbed by TolB binding to the intact colicin, showing that the significant region for TolB binding extends beyond the recognized five amino acids of the TolB box and demonstrating that the binding epitope for TolB involves a considerable degree of order within an otherwise disordered and flexible domain. Abbreviations : Im9, the immunity protein for colicin E9; E9 DNase, the endonuclease domain of colicin E9; HSQC, heteronuclear single quantum coherence; ppm, parts per million; DSS, 2,2-(dimethylsilyl)propanesulfonic acid; TSP, sodium 3-trimethylsilypropionate; T(1 - 61)-DNase fusion protein, residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight residue thrombin cleavage sequence.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Binding Sites</subject><subject>Biological Transport, Active</subject><subject>Carbon Isotopes</subject><subject>Colicins - chemistry</subject><subject>Colicins - genetics</subject><subject>Colicins - metabolism</subject><subject>Deoxyribonucleases - metabolism</subject><subject>Epitopes - metabolism</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Molecular Weight</subject><subject>Nitrogen Isotopes</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Polymers</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Quantum Theory</subject><subject>Residues</subject><subject>Toxins</subject><subject>Translocation</subject><issn>0925-2738</issn><issn>1573-5001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1vGyEQhlHVqHbT_IVq5UNv6wLDwpJbbSVNonxIVXINwuxQE-0uLqwP-fdZf0iReslcGInnZQY9hMwYnTPK4efi_Ob-7s-c7kpwLWGumNLjpf5EpqxSUFaUss9kSjWvSq6gnpCvOb-MuK65_EImrBIVF6Cm5Hm5tsm6AVPIdgixL6IvbNHFVWix2KQ4YOjLVeib0P8tcBOGuMEi9MWwxmJIts9tdIdgEzsb9nkX2-DG9kJ_IyfethnPjucpebq8eFxelbcPv6-Xv25LBwqGUnKmECtbV6phVDutUXkBwmnWQO28cM4DAOe8AY92xSwDJz2Ca4RvOMAp-XF4d9z43xbzYLqQHbat7TFus5FSM6kk_RBkimtF9-DsP_AlblM_fsLUoITkQuyg8wPkUsw5oTebFDqbXg2jZufKLMzOlXl3ZfauDNNj-PtxwnbVYfMePcqBN2WIkII</recordid><startdate>200409</startdate><enddate>200409</enddate><creator>Macdonald, Colin J</creator><creator>Tozawa, Kaeko</creator><creator>Collins, Emily S</creator><creator>Penfold, Christopher N</creator><creator>James, Richard</creator><creator>Kleanthous, Colin</creator><creator>Clayden, Nigel J</creator><creator>Moore, Geoffrey R</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>200409</creationdate><title>Characterisation of a mobile protein-binding epitope in the translocation domain of colicin E9</title><author>Macdonald, Colin J ; Tozawa, Kaeko ; Collins, Emily S ; Penfold, Christopher N ; James, Richard ; Kleanthous, Colin ; Clayden, Nigel J ; Moore, Geoffrey R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-6217ee5a857d109c99e7f434c91d38cf4ccf333222d3feab1a13c6fe3cd4fd233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Binding Sites</topic><topic>Biological Transport, Active</topic><topic>Carbon Isotopes</topic><topic>Colicins - chemistry</topic><topic>Colicins - genetics</topic><topic>Colicins - metabolism</topic><topic>Deoxyribonucleases - metabolism</topic><topic>Epitopes - metabolism</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Molecular Weight</topic><topic>Nitrogen Isotopes</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Polymers</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Quantum Theory</topic><topic>Residues</topic><topic>Toxins</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macdonald, Colin J</creatorcontrib><creatorcontrib>Tozawa, Kaeko</creatorcontrib><creatorcontrib>Collins, Emily S</creatorcontrib><creatorcontrib>Penfold, Christopher N</creatorcontrib><creatorcontrib>James, Richard</creatorcontrib><creatorcontrib>Kleanthous, Colin</creatorcontrib><creatorcontrib>Clayden, Nigel J</creatorcontrib><creatorcontrib>Moore, Geoffrey R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomolecular NMR</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macdonald, Colin J</au><au>Tozawa, Kaeko</au><au>Collins, Emily S</au><au>Penfold, Christopher N</au><au>James, Richard</au><au>Kleanthous, Colin</au><au>Clayden, Nigel J</au><au>Moore, Geoffrey R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation of a mobile protein-binding epitope in the translocation domain of colicin E9</atitle><jtitle>Journal of biomolecular NMR</jtitle><addtitle>J Biomol NMR</addtitle><date>2004-09</date><risdate>2004</risdate><volume>30</volume><issue>1</issue><spage>81</spage><epage>96</epage><pages>81-96</pages><issn>0925-2738</issn><eissn>1573-5001</eissn><abstract>The 61 kDa colicin E9 protein toxin enters the cytoplasm of susceptible cells by interacting with outer membrane and periplasmic helper proteins, and kills them by hydrolysing their DNA. The membrane translocation function is located in the N-terminal domain of the colicin, with a key signal sequence being a pentapeptide region that governs the interaction with the helper protein TolB (the TolB box). Previous NMR studies (Collins et al., 2002 J. Mol. Biol. 318, 787-804) have shown that the N-terminal 83 residues of colicin E9, which includes the TolB box, is largely unstructured and highly flexible. In order to further define the properties of this region we have studied a fusion protein containing residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight-residue linking sequence. 53 of the expected 58 backbone NH resonances for the first 61 residues and all of the expected 7 backbone NH resonances of the linking sequence were assigned with 3D (1)H-(13)C-(15)N NMR experiments, and the backbone dynamics of these regions investigated through measurement of (1)H-(15)N relaxation properties. Reduced spectral density mapping, extended Lipari-Szabo modelling, and fitting backbone R(2) relaxation rates to a polymer dynamics model identifies three clusters of interacting residues, each containing a tryptophan. Each of these clusters is perturbed by TolB binding to the intact colicin, showing that the significant region for TolB binding extends beyond the recognized five amino acids of the TolB box and demonstrating that the binding epitope for TolB involves a considerable degree of order within an otherwise disordered and flexible domain. Abbreviations : Im9, the immunity protein for colicin E9; E9 DNase, the endonuclease domain of colicin E9; HSQC, heteronuclear single quantum coherence; ppm, parts per million; DSS, 2,2-(dimethylsilyl)propanesulfonic acid; TSP, sodium 3-trimethylsilypropionate; T(1 - 61)-DNase fusion protein, residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight residue thrombin cleavage sequence.</abstract><cop>Netherlands</cop><pub>Springer Nature B.V</pub><pmid>15452437</pmid><doi>10.1023/B:JNMR.0000042963.71790.19</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-2738 |
ispartof | Journal of biomolecular NMR, 2004-09, Vol.30 (1), p.81-96 |
issn | 0925-2738 1573-5001 |
language | eng |
recordid | cdi_proquest_miscellaneous_66916760 |
source | MEDLINE; SpringerNature Journals |
subjects | Amino Acid Sequence Amino acids Binding Sites Biological Transport, Active Carbon Isotopes Colicins - chemistry Colicins - genetics Colicins - metabolism Deoxyribonucleases - metabolism Epitopes - metabolism Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Molecular Weight Nitrogen Isotopes Nuclear Magnetic Resonance, Biomolecular Polymers Protein Binding Protein Conformation Protein Structure, Tertiary Proteins Quantum Theory Residues Toxins Translocation |
title | Characterisation of a mobile protein-binding epitope in the translocation domain of colicin E9 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20of%20a%20mobile%20protein-binding%20epitope%20in%20the%20translocation%20domain%20of%20colicin%20E9&rft.jtitle=Journal%20of%20biomolecular%20NMR&rft.au=Macdonald,%20Colin%20J&rft.date=2004-09&rft.volume=30&rft.issue=1&rft.spage=81&rft.epage=96&rft.pages=81-96&rft.issn=0925-2738&rft.eissn=1573-5001&rft_id=info:doi/10.1023/B:JNMR.0000042963.71790.19&rft_dat=%3Cproquest_cross%3E66916760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=837462440&rft_id=info:pmid/15452437&rfr_iscdi=true |