Population structure and evolutionary origins of Microsporum canis, M. ferrugineum and M. audouinii

The recurrent evolutionary emergence of asexual lineages within sexual zoo- and anthropophilic dermatophyte species living in animal-frequented soil is likely to be triggered by changes in ecological niche, i.e., shifts of host animal. Subsequent adaptation to the new host species is noted. Sometime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Infection, genetics and evolution genetics and evolution, 2004-09, Vol.4 (3), p.179-186
Hauptverfasser: Kaszubiak, A., Klein, S., de Hoog, G.S., Gräser, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue 3
container_start_page 179
container_title Infection, genetics and evolution
container_volume 4
creator Kaszubiak, A.
Klein, S.
de Hoog, G.S.
Gräser, Y.
description The recurrent evolutionary emergence of asexual lineages within sexual zoo- and anthropophilic dermatophyte species living in animal-frequented soil is likely to be triggered by changes in ecological niche, i.e., shifts of host animal. Subsequent adaptation to the new host species is noted. Sometimes geographic isolation or intrinsic host factors like human race may also play a role in speciation. In the present study, we elaborate concepts of speciation in dermatophytes using the Microsporum canis complex as an example. The group consists of a cluster of phylogenetically closely related anamorphs: the anthropophilic taxa Microsporum audouinii and M. ferrugineum, and the zoophilic taxon M. canis. The sexually reproducing species underlying this complex is Arthroderma otae. The study is done by an analysis of the population structure of about 200 isolates and using intergenic spacers, non-translated regions of genes as well as hypervariable microsatellite markers that are known to evolve at high mutation rates. The results suggest that sympatric speciation took place already during the period where mating ability was maintained and thus that strictly clonal fungal species emerged in Africa and led to genetically isolated clonal species elsewhere.
doi_str_mv 10.1016/j.meegid.2003.12.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66915722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567134804000309</els_id><sourcerecordid>66915722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-dd1d26e8f0746a04ba02226e0ab6eaefa22ae0c07ad56c1779cfe0aa898f6dcf3</originalsourceid><addsrcrecordid>eNqFkUFvGyEQhVHVKk7S_IMq4tRTvB3wAutLpcpK0kqJkkN7RhgGC2t3cWCJlH9fVraUW3sCPb43I94j5AuDhgGT3_bNgLgLruEAq4bxBqD9QM6ZkGqpuFAfT3e2arsFuch5D8AU8O6MLJhoBbC1PCf2OR5Kb6YQR5qnVOxUElIzOoqvsS-zbtIbjSnswphp9PQx2BTzIaYyUGvGkG_oY0M9plQqglWd3VUyxcUSxhA-k0_e9BmvTucl-XN3-3vzc_nwdP9r8-NhaVshpqVzzHGJnQfVSgPt1gDnVQCzlWjQG84NggVlnJCWKbW2vj6abt156axfXZKvx7mHFF8K5kkPIVvsezNiLFlLuWZCcf5fkHXQKsZFBdsjOH85J_T6kMJQA9EM9NyC3utjC3puQTOuawvVdn2aX7YDunfTKfYKfD8CWON4DZh0tgFHiy4ktJN2Mfx7w1_j9Zxi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18047125</pqid></control><display><type>article</type><title>Population structure and evolutionary origins of Microsporum canis, M. ferrugineum and M. audouinii</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Kaszubiak, A. ; Klein, S. ; de Hoog, G.S. ; Gräser, Y.</creator><creatorcontrib>Kaszubiak, A. ; Klein, S. ; de Hoog, G.S. ; Gräser, Y.</creatorcontrib><description>The recurrent evolutionary emergence of asexual lineages within sexual zoo- and anthropophilic dermatophyte species living in animal-frequented soil is likely to be triggered by changes in ecological niche, i.e., shifts of host animal. Subsequent adaptation to the new host species is noted. Sometimes geographic isolation or intrinsic host factors like human race may also play a role in speciation. In the present study, we elaborate concepts of speciation in dermatophytes using the Microsporum canis complex as an example. The group consists of a cluster of phylogenetically closely related anamorphs: the anthropophilic taxa Microsporum audouinii and M. ferrugineum, and the zoophilic taxon M. canis. The sexually reproducing species underlying this complex is Arthroderma otae. The study is done by an analysis of the population structure of about 200 isolates and using intergenic spacers, non-translated regions of genes as well as hypervariable microsatellite markers that are known to evolve at high mutation rates. The results suggest that sympatric speciation took place already during the period where mating ability was maintained and thus that strictly clonal fungal species emerged in Africa and led to genetically isolated clonal species elsewhere.</description><identifier>ISSN: 1567-1348</identifier><identifier>EISSN: 1567-7257</identifier><identifier>DOI: 10.1016/j.meegid.2003.12.004</identifier><identifier>PMID: 15450196</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Alleles ; Animals ; Base Sequence ; Biological Evolution ; Clonality ; Dermatophytes ; Fungi ; Genes, Fungal ; Genotype ; Humans ; Microsatellite ; Microsatellite Repeats ; Microsporum ; Microsporum - classification ; Microsporum - genetics ; Microsporum - physiology ; Microsporum audouinii ; Microsporum canis ; Microsporum ferrugineum ; Molecular Sequence Data ; Phylogeny ; Polymorphism, Genetic ; Population structure ; Sequence Alignment</subject><ispartof>Infection, genetics and evolution, 2004-09, Vol.4 (3), p.179-186</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-dd1d26e8f0746a04ba02226e0ab6eaefa22ae0c07ad56c1779cfe0aa898f6dcf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.meegid.2003.12.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15450196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaszubiak, A.</creatorcontrib><creatorcontrib>Klein, S.</creatorcontrib><creatorcontrib>de Hoog, G.S.</creatorcontrib><creatorcontrib>Gräser, Y.</creatorcontrib><title>Population structure and evolutionary origins of Microsporum canis, M. ferrugineum and M. audouinii</title><title>Infection, genetics and evolution</title><addtitle>Infect Genet Evol</addtitle><description>The recurrent evolutionary emergence of asexual lineages within sexual zoo- and anthropophilic dermatophyte species living in animal-frequented soil is likely to be triggered by changes in ecological niche, i.e., shifts of host animal. Subsequent adaptation to the new host species is noted. Sometimes geographic isolation or intrinsic host factors like human race may also play a role in speciation. In the present study, we elaborate concepts of speciation in dermatophytes using the Microsporum canis complex as an example. The group consists of a cluster of phylogenetically closely related anamorphs: the anthropophilic taxa Microsporum audouinii and M. ferrugineum, and the zoophilic taxon M. canis. The sexually reproducing species underlying this complex is Arthroderma otae. The study is done by an analysis of the population structure of about 200 isolates and using intergenic spacers, non-translated regions of genes as well as hypervariable microsatellite markers that are known to evolve at high mutation rates. The results suggest that sympatric speciation took place already during the period where mating ability was maintained and thus that strictly clonal fungal species emerged in Africa and led to genetically isolated clonal species elsewhere.</description><subject>Alleles</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological Evolution</subject><subject>Clonality</subject><subject>Dermatophytes</subject><subject>Fungi</subject><subject>Genes, Fungal</subject><subject>Genotype</subject><subject>Humans</subject><subject>Microsatellite</subject><subject>Microsatellite Repeats</subject><subject>Microsporum</subject><subject>Microsporum - classification</subject><subject>Microsporum - genetics</subject><subject>Microsporum - physiology</subject><subject>Microsporum audouinii</subject><subject>Microsporum canis</subject><subject>Microsporum ferrugineum</subject><subject>Molecular Sequence Data</subject><subject>Phylogeny</subject><subject>Polymorphism, Genetic</subject><subject>Population structure</subject><subject>Sequence Alignment</subject><issn>1567-1348</issn><issn>1567-7257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFvGyEQhVHVKk7S_IMq4tRTvB3wAutLpcpK0kqJkkN7RhgGC2t3cWCJlH9fVraUW3sCPb43I94j5AuDhgGT3_bNgLgLruEAq4bxBqD9QM6ZkGqpuFAfT3e2arsFuch5D8AU8O6MLJhoBbC1PCf2OR5Kb6YQR5qnVOxUElIzOoqvsS-zbtIbjSnswphp9PQx2BTzIaYyUGvGkG_oY0M9plQqglWd3VUyxcUSxhA-k0_e9BmvTucl-XN3-3vzc_nwdP9r8-NhaVshpqVzzHGJnQfVSgPt1gDnVQCzlWjQG84NggVlnJCWKbW2vj6abt156axfXZKvx7mHFF8K5kkPIVvsezNiLFlLuWZCcf5fkHXQKsZFBdsjOH85J_T6kMJQA9EM9NyC3utjC3puQTOuawvVdn2aX7YDunfTKfYKfD8CWON4DZh0tgFHiy4ktJN2Mfx7w1_j9Zxi</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Kaszubiak, A.</creator><creator>Klein, S.</creator><creator>de Hoog, G.S.</creator><creator>Gräser, Y.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040901</creationdate><title>Population structure and evolutionary origins of Microsporum canis, M. ferrugineum and M. audouinii</title><author>Kaszubiak, A. ; Klein, S. ; de Hoog, G.S. ; Gräser, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-dd1d26e8f0746a04ba02226e0ab6eaefa22ae0c07ad56c1779cfe0aa898f6dcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological Evolution</topic><topic>Clonality</topic><topic>Dermatophytes</topic><topic>Fungi</topic><topic>Genes, Fungal</topic><topic>Genotype</topic><topic>Humans</topic><topic>Microsatellite</topic><topic>Microsatellite Repeats</topic><topic>Microsporum</topic><topic>Microsporum - classification</topic><topic>Microsporum - genetics</topic><topic>Microsporum - physiology</topic><topic>Microsporum audouinii</topic><topic>Microsporum canis</topic><topic>Microsporum ferrugineum</topic><topic>Molecular Sequence Data</topic><topic>Phylogeny</topic><topic>Polymorphism, Genetic</topic><topic>Population structure</topic><topic>Sequence Alignment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaszubiak, A.</creatorcontrib><creatorcontrib>Klein, S.</creatorcontrib><creatorcontrib>de Hoog, G.S.</creatorcontrib><creatorcontrib>Gräser, Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Infection, genetics and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaszubiak, A.</au><au>Klein, S.</au><au>de Hoog, G.S.</au><au>Gräser, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population structure and evolutionary origins of Microsporum canis, M. ferrugineum and M. audouinii</atitle><jtitle>Infection, genetics and evolution</jtitle><addtitle>Infect Genet Evol</addtitle><date>2004-09-01</date><risdate>2004</risdate><volume>4</volume><issue>3</issue><spage>179</spage><epage>186</epage><pages>179-186</pages><issn>1567-1348</issn><eissn>1567-7257</eissn><abstract>The recurrent evolutionary emergence of asexual lineages within sexual zoo- and anthropophilic dermatophyte species living in animal-frequented soil is likely to be triggered by changes in ecological niche, i.e., shifts of host animal. Subsequent adaptation to the new host species is noted. Sometimes geographic isolation or intrinsic host factors like human race may also play a role in speciation. In the present study, we elaborate concepts of speciation in dermatophytes using the Microsporum canis complex as an example. The group consists of a cluster of phylogenetically closely related anamorphs: the anthropophilic taxa Microsporum audouinii and M. ferrugineum, and the zoophilic taxon M. canis. The sexually reproducing species underlying this complex is Arthroderma otae. The study is done by an analysis of the population structure of about 200 isolates and using intergenic spacers, non-translated regions of genes as well as hypervariable microsatellite markers that are known to evolve at high mutation rates. The results suggest that sympatric speciation took place already during the period where mating ability was maintained and thus that strictly clonal fungal species emerged in Africa and led to genetically isolated clonal species elsewhere.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>15450196</pmid><doi>10.1016/j.meegid.2003.12.004</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1567-1348
ispartof Infection, genetics and evolution, 2004-09, Vol.4 (3), p.179-186
issn 1567-1348
1567-7257
language eng
recordid cdi_proquest_miscellaneous_66915722
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Alleles
Animals
Base Sequence
Biological Evolution
Clonality
Dermatophytes
Fungi
Genes, Fungal
Genotype
Humans
Microsatellite
Microsatellite Repeats
Microsporum
Microsporum - classification
Microsporum - genetics
Microsporum - physiology
Microsporum audouinii
Microsporum canis
Microsporum ferrugineum
Molecular Sequence Data
Phylogeny
Polymorphism, Genetic
Population structure
Sequence Alignment
title Population structure and evolutionary origins of Microsporum canis, M. ferrugineum and M. audouinii
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T02%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population%20structure%20and%20evolutionary%20origins%20of%20Microsporum%20canis,%20M.%20ferrugineum%20and%20M.%20audouinii&rft.jtitle=Infection,%20genetics%20and%20evolution&rft.au=Kaszubiak,%20A.&rft.date=2004-09-01&rft.volume=4&rft.issue=3&rft.spage=179&rft.epage=186&rft.pages=179-186&rft.issn=1567-1348&rft.eissn=1567-7257&rft_id=info:doi/10.1016/j.meegid.2003.12.004&rft_dat=%3Cproquest_cross%3E66915722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18047125&rft_id=info:pmid/15450196&rft_els_id=S1567134804000309&rfr_iscdi=true