Genome-scan analysis for quantitative trait loci in an F2 tilapia hybrid
We searched for genetic linkage between DNA markers and quantitative trait loci (QTLs) for innate immunity, response to stress, biochemical parameters of blood, and fish size in an F2 population derived from an interspecific tilapia hybrid (Oreochromis mossambicusx O. aureus). A family of 114 fish w...
Gespeichert in:
Veröffentlicht in: | Molecular genetics and genomics : MGG 2004-09, Vol.272 (2), p.162-172 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 172 |
---|---|
container_issue | 2 |
container_start_page | 162 |
container_title | Molecular genetics and genomics : MGG |
container_volume | 272 |
creator | Cnaani, A Zilberman, N Tinman, S Hulata, G Ron, M |
description | We searched for genetic linkage between DNA markers and quantitative trait loci (QTLs) for innate immunity, response to stress, biochemical parameters of blood, and fish size in an F2 population derived from an interspecific tilapia hybrid (Oreochromis mossambicusx O. aureus). A family of 114 fish was scanned for 40 polymorphic microsatellite DNA markers and two polymorphic genes, covering approximately 80% of the tilapia genome. These fish had previously been phenotyped for seven immune-response traits and six blood parameters. Critical values for significance were P |
doi_str_mv | 10.1007/s00438-004-1045-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66914905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66914905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-4803432d5065a098619055cb2acb47c3e7bf6bf4020ccd847f5d0cd451757d153</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlZ_gBcJHrxFZzbJZvcoxVqh4EXPIZvNYsp-tMmu0H_vLi0KXmbm8LwvzEPILcIjAqinCCB4xsbJEIRkeEbmmKJiIk34-e-NckauYtwCoEoTdUlmKIXIUYk5Wb-6tmsci9a01LSmPkQfadUFuh9M2_ve9P7b0T4Y39O6s576iaOrhPa-Njtv6NehCL68JheVqaO7Oe0F-Vy9fCzXbPP--rZ83jDLQfZMZMAFT0oJqTSQZynmIKUtEmMLoSx3qqjSohKQgLVlJlQlS7ClkKikKlHyBXk49u5Ctx9c7HXjo3V1bVrXDVGnaY5i7BzB-3_gthvC-GHUGSiuMpFMEB4hG7oYg6v0LvjGhING0JNjfXSsx6knxxrHzN2peCgaV_4lTlL5D7jZdRs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>807378425</pqid></control><display><type>article</type><title>Genome-scan analysis for quantitative trait loci in an F2 tilapia hybrid</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cnaani, A ; Zilberman, N ; Tinman, S ; Hulata, G ; Ron, M</creator><creatorcontrib>Cnaani, A ; Zilberman, N ; Tinman, S ; Hulata, G ; Ron, M</creatorcontrib><description>We searched for genetic linkage between DNA markers and quantitative trait loci (QTLs) for innate immunity, response to stress, biochemical parameters of blood, and fish size in an F2 population derived from an interspecific tilapia hybrid (Oreochromis mossambicusx O. aureus). A family of 114 fish was scanned for 40 polymorphic microsatellite DNA markers and two polymorphic genes, covering approximately 80% of the tilapia genome. These fish had previously been phenotyped for seven immune-response traits and six blood parameters. Critical values for significance were P <0.05 with the false discovery rate (FDR) controlled at 40%. The genome-scan analysis resulted in 35 significant marker-trait associations, involving 26 markers in 16 linkage groups. In a second experiment, nine markers were re-sampled in a second family of 79 fish of the same species hybrid. Seven markers (GM180, GM553, MHC-I, UNH848, UNH868, UNH898 and UNH925) in five linkage groups (LG 1, 3, 4, 22 and 23) were associated with stress response traits. An additional six markers (GM47, GM552, UNH208, UNH881, UNH952, UNH998) in five linkage groups (LG 4, 16, 19, 20 and 23) were verified for their associations with immune response traits, by linkage to several different traits. The portion of variance explained by each QTL was 11% on average, with a maximum of 29%. The average additive effect of QTLs was 0.2 standard deviation units of stress response traits and fish size, with a maximum of 0.33. In three linkage groups (LG 1, 3 and 23) markers were associated with stress response, body weight and sex determination, confirming the location of QTLs reported by several other studies.</description><identifier>ISSN: 1617-4615</identifier><identifier>EISSN: 1617-4623</identifier><identifier>DOI: 10.1007/s00438-004-1045-1</identifier><identifier>PMID: 15449174</identifier><language>eng</language><publisher>Germany: Springer Nature B.V</publisher><subject>Animals ; Chromosome Mapping ; DNA - genetics ; Female ; Fish ; Genetic Markers ; Genetics ; Genome ; Genomics ; Hybridization, Genetic ; Male ; Microsatellite Repeats ; Phenotype ; Quantitative Trait Loci ; Standard deviation ; Stress response ; Stress, Physiological - genetics ; Tilapia ; Tilapia - genetics</subject><ispartof>Molecular genetics and genomics : MGG, 2004-09, Vol.272 (2), p.162-172</ispartof><rights>Springer-Verlag 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-4803432d5065a098619055cb2acb47c3e7bf6bf4020ccd847f5d0cd451757d153</citedby><cites>FETCH-LOGICAL-c305t-4803432d5065a098619055cb2acb47c3e7bf6bf4020ccd847f5d0cd451757d153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15449174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cnaani, A</creatorcontrib><creatorcontrib>Zilberman, N</creatorcontrib><creatorcontrib>Tinman, S</creatorcontrib><creatorcontrib>Hulata, G</creatorcontrib><creatorcontrib>Ron, M</creatorcontrib><title>Genome-scan analysis for quantitative trait loci in an F2 tilapia hybrid</title><title>Molecular genetics and genomics : MGG</title><addtitle>Mol Genet Genomics</addtitle><description>We searched for genetic linkage between DNA markers and quantitative trait loci (QTLs) for innate immunity, response to stress, biochemical parameters of blood, and fish size in an F2 population derived from an interspecific tilapia hybrid (Oreochromis mossambicusx O. aureus). A family of 114 fish was scanned for 40 polymorphic microsatellite DNA markers and two polymorphic genes, covering approximately 80% of the tilapia genome. These fish had previously been phenotyped for seven immune-response traits and six blood parameters. Critical values for significance were P <0.05 with the false discovery rate (FDR) controlled at 40%. The genome-scan analysis resulted in 35 significant marker-trait associations, involving 26 markers in 16 linkage groups. In a second experiment, nine markers were re-sampled in a second family of 79 fish of the same species hybrid. Seven markers (GM180, GM553, MHC-I, UNH848, UNH868, UNH898 and UNH925) in five linkage groups (LG 1, 3, 4, 22 and 23) were associated with stress response traits. An additional six markers (GM47, GM552, UNH208, UNH881, UNH952, UNH998) in five linkage groups (LG 4, 16, 19, 20 and 23) were verified for their associations with immune response traits, by linkage to several different traits. The portion of variance explained by each QTL was 11% on average, with a maximum of 29%. The average additive effect of QTLs was 0.2 standard deviation units of stress response traits and fish size, with a maximum of 0.33. In three linkage groups (LG 1, 3 and 23) markers were associated with stress response, body weight and sex determination, confirming the location of QTLs reported by several other studies.</description><subject>Animals</subject><subject>Chromosome Mapping</subject><subject>DNA - genetics</subject><subject>Female</subject><subject>Fish</subject><subject>Genetic Markers</subject><subject>Genetics</subject><subject>Genome</subject><subject>Genomics</subject><subject>Hybridization, Genetic</subject><subject>Male</subject><subject>Microsatellite Repeats</subject><subject>Phenotype</subject><subject>Quantitative Trait Loci</subject><subject>Standard deviation</subject><subject>Stress response</subject><subject>Stress, Physiological - genetics</subject><subject>Tilapia</subject><subject>Tilapia - genetics</subject><issn>1617-4615</issn><issn>1617-4623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkE1LAzEQhoMotlZ_gBcJHrxFZzbJZvcoxVqh4EXPIZvNYsp-tMmu0H_vLi0KXmbm8LwvzEPILcIjAqinCCB4xsbJEIRkeEbmmKJiIk34-e-NckauYtwCoEoTdUlmKIXIUYk5Wb-6tmsci9a01LSmPkQfadUFuh9M2_ve9P7b0T4Y39O6s576iaOrhPa-Njtv6NehCL68JheVqaO7Oe0F-Vy9fCzXbPP--rZ83jDLQfZMZMAFT0oJqTSQZynmIKUtEmMLoSx3qqjSohKQgLVlJlQlS7ClkKikKlHyBXk49u5Ctx9c7HXjo3V1bVrXDVGnaY5i7BzB-3_gthvC-GHUGSiuMpFMEB4hG7oYg6v0LvjGhING0JNjfXSsx6knxxrHzN2peCgaV_4lTlL5D7jZdRs</recordid><startdate>200409</startdate><enddate>200409</enddate><creator>Cnaani, A</creator><creator>Zilberman, N</creator><creator>Tinman, S</creator><creator>Hulata, G</creator><creator>Ron, M</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200409</creationdate><title>Genome-scan analysis for quantitative trait loci in an F2 tilapia hybrid</title><author>Cnaani, A ; Zilberman, N ; Tinman, S ; Hulata, G ; Ron, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-4803432d5065a098619055cb2acb47c3e7bf6bf4020ccd847f5d0cd451757d153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Chromosome Mapping</topic><topic>DNA - genetics</topic><topic>Female</topic><topic>Fish</topic><topic>Genetic Markers</topic><topic>Genetics</topic><topic>Genome</topic><topic>Genomics</topic><topic>Hybridization, Genetic</topic><topic>Male</topic><topic>Microsatellite Repeats</topic><topic>Phenotype</topic><topic>Quantitative Trait Loci</topic><topic>Standard deviation</topic><topic>Stress response</topic><topic>Stress, Physiological - genetics</topic><topic>Tilapia</topic><topic>Tilapia - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cnaani, A</creatorcontrib><creatorcontrib>Zilberman, N</creatorcontrib><creatorcontrib>Tinman, S</creatorcontrib><creatorcontrib>Hulata, G</creatorcontrib><creatorcontrib>Ron, M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular genetics and genomics : MGG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cnaani, A</au><au>Zilberman, N</au><au>Tinman, S</au><au>Hulata, G</au><au>Ron, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-scan analysis for quantitative trait loci in an F2 tilapia hybrid</atitle><jtitle>Molecular genetics and genomics : MGG</jtitle><addtitle>Mol Genet Genomics</addtitle><date>2004-09</date><risdate>2004</risdate><volume>272</volume><issue>2</issue><spage>162</spage><epage>172</epage><pages>162-172</pages><issn>1617-4615</issn><eissn>1617-4623</eissn><abstract>We searched for genetic linkage between DNA markers and quantitative trait loci (QTLs) for innate immunity, response to stress, biochemical parameters of blood, and fish size in an F2 population derived from an interspecific tilapia hybrid (Oreochromis mossambicusx O. aureus). A family of 114 fish was scanned for 40 polymorphic microsatellite DNA markers and two polymorphic genes, covering approximately 80% of the tilapia genome. These fish had previously been phenotyped for seven immune-response traits and six blood parameters. Critical values for significance were P <0.05 with the false discovery rate (FDR) controlled at 40%. The genome-scan analysis resulted in 35 significant marker-trait associations, involving 26 markers in 16 linkage groups. In a second experiment, nine markers were re-sampled in a second family of 79 fish of the same species hybrid. Seven markers (GM180, GM553, MHC-I, UNH848, UNH868, UNH898 and UNH925) in five linkage groups (LG 1, 3, 4, 22 and 23) were associated with stress response traits. An additional six markers (GM47, GM552, UNH208, UNH881, UNH952, UNH998) in five linkage groups (LG 4, 16, 19, 20 and 23) were verified for their associations with immune response traits, by linkage to several different traits. The portion of variance explained by each QTL was 11% on average, with a maximum of 29%. The average additive effect of QTLs was 0.2 standard deviation units of stress response traits and fish size, with a maximum of 0.33. In three linkage groups (LG 1, 3 and 23) markers were associated with stress response, body weight and sex determination, confirming the location of QTLs reported by several other studies.</abstract><cop>Germany</cop><pub>Springer Nature B.V</pub><pmid>15449174</pmid><doi>10.1007/s00438-004-1045-1</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-4615 |
ispartof | Molecular genetics and genomics : MGG, 2004-09, Vol.272 (2), p.162-172 |
issn | 1617-4615 1617-4623 |
language | eng |
recordid | cdi_proquest_miscellaneous_66914905 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animals Chromosome Mapping DNA - genetics Female Fish Genetic Markers Genetics Genome Genomics Hybridization, Genetic Male Microsatellite Repeats Phenotype Quantitative Trait Loci Standard deviation Stress response Stress, Physiological - genetics Tilapia Tilapia - genetics |
title | Genome-scan analysis for quantitative trait loci in an F2 tilapia hybrid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A13%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-scan%20analysis%20for%20quantitative%20trait%20loci%20in%20an%20F2%20tilapia%20hybrid&rft.jtitle=Molecular%20genetics%20and%20genomics%20:%20MGG&rft.au=Cnaani,%20A&rft.date=2004-09&rft.volume=272&rft.issue=2&rft.spage=162&rft.epage=172&rft.pages=162-172&rft.issn=1617-4615&rft.eissn=1617-4623&rft_id=info:doi/10.1007/s00438-004-1045-1&rft_dat=%3Cproquest_cross%3E66914905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=807378425&rft_id=info:pmid/15449174&rfr_iscdi=true |