A Taylor vortex analogy in granular flows

Fluids sheared between concentric rotating cylinders undergo a series of three-dimensional instabilities. Since Taylor's archetypal 1923 study, these have proved pivotal to understanding how fluid flows become unstable and eventually undergo transitions to chaotic or turbulent states. In contra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature 2004-09, Vol.431 (7007), p.433-437
Hauptverfasser: Glasser, Benjamin J, Conway, Stephen L, Shinbrot, Troy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 437
container_issue 7007
container_start_page 433
container_title Nature
container_volume 431
creator Glasser, Benjamin J
Conway, Stephen L
Shinbrot, Troy
description Fluids sheared between concentric rotating cylinders undergo a series of three-dimensional instabilities. Since Taylor's archetypal 1923 study, these have proved pivotal to understanding how fluid flows become unstable and eventually undergo transitions to chaotic or turbulent states. In contrast, predicting the dynamics of granular systems-from nano-sized particles to debris flows-is far less reliable. Under shear these materials resemble fluids, but solid-like responses, non-equilibrium structures and segregation patterns develop unexpectedly. As a result, the analysis of geophysical events and the performance of largely empirical particle technologies might suffer. Here, using gas fluidization to overcome jamming, we show experimentally that granular materials develop vortices consistent with the primary Taylor instability in fluids. However, the vortices observed in our fluidized granular bed are unlike those in fluids in that they are accompanied by novel mixing-segregation transitions. The vortices seem to alleviate increased strain by spawning new vortices, directly modifying the scale of kinetic interactions. Our observations provide insights into the mechanisms of shear transmission by particles and their consequent convective mixing.
doi_str_mv 10.1038/nature02901
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_66908730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A186288348</galeid><sourcerecordid>A186288348</sourcerecordid><originalsourceid>FETCH-LOGICAL-a597t-56dd23284866183082736c30dfe954722957ec6f9d521883b331d801b04dd7f83</originalsourceid><addsrcrecordid>eNqF0t2L1DAQAPAgireePvkuVVA4tOdM0nz0cTn8ODgQ9HwO2TQtPbLpXtKq-98b6eLuyoLkIZD8MklmhpDnCJcITL0PZpyiA1oDPiALrKQoK6HkQ7IAoKoExcQZeZLSHQBwlNVjcoacKQEgF-RiWdyarR9i8WOIo_tVmGD80G2LPhRdNGHyJhatH36mp-RRa3xyz3bzOfn-8cPt1efy5sun66vlTWl4LceSi6ahjKpKCYGKgaKSCcugaV3NK0lpzaWzoq0bTlEptmIMGwW4gqppZKvYOXkzx93E4X5yadTrPlnnvQlumJIWogYlGfwXMsEQhcQMX_0D74Yp5n8mTaHiArmsMypn1BnvdB_aYYzGdi64mBMSXNvn5SUqQfOjK7UPeuTtpr_Xh-jyBMqjcevenox6cXQgm1yUsTNTSvr629dj-3a2Ng4pRdfqTezXJm41gv7TGfqgM7J-sUvCtFq7Zm93rZDB6x0wyRrf5uLbPu2dQMYRaXbvZpfyVuhc3Gfz9L0vZz4v_o13aH4DNyXVsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204561579</pqid></control><display><type>article</type><title>A Taylor vortex analogy in granular flows</title><source>SpringerLink Journals</source><source>Nature</source><creator>Glasser, Benjamin J ; Conway, Stephen L ; Shinbrot, Troy</creator><creatorcontrib>Glasser, Benjamin J ; Conway, Stephen L ; Shinbrot, Troy</creatorcontrib><description>Fluids sheared between concentric rotating cylinders undergo a series of three-dimensional instabilities. Since Taylor's archetypal 1923 study, these have proved pivotal to understanding how fluid flows become unstable and eventually undergo transitions to chaotic or turbulent states. In contrast, predicting the dynamics of granular systems-from nano-sized particles to debris flows-is far less reliable. Under shear these materials resemble fluids, but solid-like responses, non-equilibrium structures and segregation patterns develop unexpectedly. As a result, the analysis of geophysical events and the performance of largely empirical particle technologies might suffer. Here, using gas fluidization to overcome jamming, we show experimentally that granular materials develop vortices consistent with the primary Taylor instability in fluids. However, the vortices observed in our fluidized granular bed are unlike those in fluids in that they are accompanied by novel mixing-segregation transitions. The vortices seem to alleviate increased strain by spawning new vortices, directly modifying the scale of kinetic interactions. Our observations provide insights into the mechanisms of shear transmission by particles and their consequent convective mixing.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature02901</identifier><identifier>PMID: 15386007</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Debris flow ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fluidization ; Fundamental areas of phenomenology (including applications) ; Granular solids ; Humanities and Social Sciences ; Hydrodynamic stability ; Instability of shear flows ; Kinetics ; letter ; Material form ; multidisciplinary ; Particle physics ; Physics ; Rheology ; Science ; Science (multidisciplinary) ; Shear tests ; Spawning</subject><ispartof>Nature, 2004-09, Vol.431 (7007), p.433-437</ispartof><rights>Macmillan Magazines Ltd. 2004</rights><rights>2004 INIST-CNRS</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Sep 23, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a597t-56dd23284866183082736c30dfe954722957ec6f9d521883b331d801b04dd7f83</citedby><cites>FETCH-LOGICAL-a597t-56dd23284866183082736c30dfe954722957ec6f9d521883b331d801b04dd7f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature02901$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature02901$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16135112$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15386007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Glasser, Benjamin J</creatorcontrib><creatorcontrib>Conway, Stephen L</creatorcontrib><creatorcontrib>Shinbrot, Troy</creatorcontrib><title>A Taylor vortex analogy in granular flows</title><title>Nature</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Fluids sheared between concentric rotating cylinders undergo a series of three-dimensional instabilities. Since Taylor's archetypal 1923 study, these have proved pivotal to understanding how fluid flows become unstable and eventually undergo transitions to chaotic or turbulent states. In contrast, predicting the dynamics of granular systems-from nano-sized particles to debris flows-is far less reliable. Under shear these materials resemble fluids, but solid-like responses, non-equilibrium structures and segregation patterns develop unexpectedly. As a result, the analysis of geophysical events and the performance of largely empirical particle technologies might suffer. Here, using gas fluidization to overcome jamming, we show experimentally that granular materials develop vortices consistent with the primary Taylor instability in fluids. However, the vortices observed in our fluidized granular bed are unlike those in fluids in that they are accompanied by novel mixing-segregation transitions. The vortices seem to alleviate increased strain by spawning new vortices, directly modifying the scale of kinetic interactions. Our observations provide insights into the mechanisms of shear transmission by particles and their consequent convective mixing.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Debris flow</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluidization</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Granular solids</subject><subject>Humanities and Social Sciences</subject><subject>Hydrodynamic stability</subject><subject>Instability of shear flows</subject><subject>Kinetics</subject><subject>letter</subject><subject>Material form</subject><subject>multidisciplinary</subject><subject>Particle physics</subject><subject>Physics</subject><subject>Rheology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Shear tests</subject><subject>Spawning</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0t2L1DAQAPAgireePvkuVVA4tOdM0nz0cTn8ODgQ9HwO2TQtPbLpXtKq-98b6eLuyoLkIZD8MklmhpDnCJcITL0PZpyiA1oDPiALrKQoK6HkQ7IAoKoExcQZeZLSHQBwlNVjcoacKQEgF-RiWdyarR9i8WOIo_tVmGD80G2LPhRdNGHyJhatH36mp-RRa3xyz3bzOfn-8cPt1efy5sun66vlTWl4LceSi6ahjKpKCYGKgaKSCcugaV3NK0lpzaWzoq0bTlEptmIMGwW4gqppZKvYOXkzx93E4X5yadTrPlnnvQlumJIWogYlGfwXMsEQhcQMX_0D74Yp5n8mTaHiArmsMypn1BnvdB_aYYzGdi64mBMSXNvn5SUqQfOjK7UPeuTtpr_Xh-jyBMqjcevenox6cXQgm1yUsTNTSvr629dj-3a2Ng4pRdfqTezXJm41gv7TGfqgM7J-sUvCtFq7Zm93rZDB6x0wyRrf5uLbPu2dQMYRaXbvZpfyVuhc3Gfz9L0vZz4v_o13aH4DNyXVsw</recordid><startdate>20040923</startdate><enddate>20040923</enddate><creator>Glasser, Benjamin J</creator><creator>Conway, Stephen L</creator><creator>Shinbrot, Troy</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20040923</creationdate><title>A Taylor vortex analogy in granular flows</title><author>Glasser, Benjamin J ; Conway, Stephen L ; Shinbrot, Troy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a597t-56dd23284866183082736c30dfe954722957ec6f9d521883b331d801b04dd7f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Debris flow</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluidization</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Granular solids</topic><topic>Humanities and Social Sciences</topic><topic>Hydrodynamic stability</topic><topic>Instability of shear flows</topic><topic>Kinetics</topic><topic>letter</topic><topic>Material form</topic><topic>multidisciplinary</topic><topic>Particle physics</topic><topic>Physics</topic><topic>Rheology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Shear tests</topic><topic>Spawning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glasser, Benjamin J</creatorcontrib><creatorcontrib>Conway, Stephen L</creatorcontrib><creatorcontrib>Shinbrot, Troy</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glasser, Benjamin J</au><au>Conway, Stephen L</au><au>Shinbrot, Troy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Taylor vortex analogy in granular flows</atitle><jtitle>Nature</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2004-09-23</date><risdate>2004</risdate><volume>431</volume><issue>7007</issue><spage>433</spage><epage>437</epage><pages>433-437</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Fluids sheared between concentric rotating cylinders undergo a series of three-dimensional instabilities. Since Taylor's archetypal 1923 study, these have proved pivotal to understanding how fluid flows become unstable and eventually undergo transitions to chaotic or turbulent states. In contrast, predicting the dynamics of granular systems-from nano-sized particles to debris flows-is far less reliable. Under shear these materials resemble fluids, but solid-like responses, non-equilibrium structures and segregation patterns develop unexpectedly. As a result, the analysis of geophysical events and the performance of largely empirical particle technologies might suffer. Here, using gas fluidization to overcome jamming, we show experimentally that granular materials develop vortices consistent with the primary Taylor instability in fluids. However, the vortices observed in our fluidized granular bed are unlike those in fluids in that they are accompanied by novel mixing-segregation transitions. The vortices seem to alleviate increased strain by spawning new vortices, directly modifying the scale of kinetic interactions. Our observations provide insights into the mechanisms of shear transmission by particles and their consequent convective mixing.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>15386007</pmid><doi>10.1038/nature02901</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature, 2004-09, Vol.431 (7007), p.433-437
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_66908730
source SpringerLink Journals; Nature
subjects Cross-disciplinary physics: materials science
rheology
Debris flow
Exact sciences and technology
Fluid dynamics
Fluid flow
Fluidization
Fundamental areas of phenomenology (including applications)
Granular solids
Humanities and Social Sciences
Hydrodynamic stability
Instability of shear flows
Kinetics
letter
Material form
multidisciplinary
Particle physics
Physics
Rheology
Science
Science (multidisciplinary)
Shear tests
Spawning
title A Taylor vortex analogy in granular flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Taylor%20vortex%20analogy%20in%20granular%20flows&rft.jtitle=Nature&rft.au=Glasser,%20Benjamin%20J&rft.date=2004-09-23&rft.volume=431&rft.issue=7007&rft.spage=433&rft.epage=437&rft.pages=433-437&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature02901&rft_dat=%3Cgale_proqu%3EA186288348%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204561579&rft_id=info:pmid/15386007&rft_galeid=A186288348&rfr_iscdi=true