Preparation of Monodisperse Block Copolymer Vesicles via a Thermotropic Cylinder−Vesicle Transition
In aqueous solution, poly(2-vinylpyridine-b-ethylene oxide) spontaneously forms bilayer vesicles, the size of which can be tailored by extrusion through polycarbonate membranes. However, their size can be even more precisely influenced by subjecting them to a specific cooling/warming process proceed...
Gespeichert in:
Veröffentlicht in: | Langmuir 2009-02, Vol.25 (3), p.1337-1344 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1344 |
---|---|
container_issue | 3 |
container_start_page | 1337 |
container_title | Langmuir |
container_volume | 25 |
creator | Rank, Anja Hauschild, Stephan Förster, Stephan Schubert, Rolf |
description | In aqueous solution, poly(2-vinylpyridine-b-ethylene oxide) spontaneously forms bilayer vesicles, the size of which can be tailored by extrusion through polycarbonate membranes. However, their size can be even more precisely influenced by subjecting them to a specific cooling/warming process proceeding through a cylinder−vesicle shape transition. The thermotropic alterations of the polymer aggregates and the topological pathways of the cylinder−vesicle transition were followed by dynamic light scattering (DLS) and cryo-electron microscopy (cryo-TEM). Upon cooling the vesicles to 4 °C, there is a transition of the vesicles to basketlike aggregates and their further disintegration to wormlike micelles. Rewarming of the dispersion results in the reformation of vesicles via intermediate discoid and octopus-like structures. The variation of incubation times at 4 and 25 °C, heating rate, polymer concentration, and ionic strength allows tailored preparation of unilamellar and almost monodisperse vesicles with diameters between 60 and 500 nm. Furthermore, fluorescently labeled dextrans, which were used as model drugs of differing molar mass, could be easily and stably encapsulated during the thermotropic formation of vesicles from wormlike micelles. |
doi_str_mv | 10.1021/la802709v |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66903716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66903716</sourcerecordid><originalsourceid>FETCH-LOGICAL-a343t-6574d880c4c7160330a241bda65eac6dd9788ef43c19108f403db524441f92613</originalsourceid><addsrcrecordid>eNpt0M1u1DAUBWALgZhhyoIXQN6AxCJw_ZfES4haQBrULqZsI49zIzw4cbCTSvMGrPuIPElTTdTZsLqbT-fqHELeMPjIgLNP3pTAC9B3z8iaKQ6ZKnnxnKyhkCIrZC5W5FVKBwDQQuqXZMU040opvSZ4E3Ew0Ywu9DS09EfoQ-PSgDEh_eKD_U2rMAR_7DDSn5ic9ZjonTPU0N0vjF0YYxicpdXRu77B-O_v_cLoLpo-ucfkC_KiNT7h6-VuyO3V5a76lm2vv36vPm8zI6QYs1wVsilLsNIWLAchwHDJ9o3JFRqbN40uyhJbKexcAMpWgmj2ikspWat5zsSGvD_lDjH8mTCNdeeSRe9Nj2FKdZ5rEHP0DD-coI0hpYhtPUTXmXisGdSPm9ZPm8727RI67TtsznIZcQbvFmCSNb6da1uXnhxnoDlX7OyMTfUhTLGft_jPwwfxCovG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66903716</pqid></control><display><type>article</type><title>Preparation of Monodisperse Block Copolymer Vesicles via a Thermotropic Cylinder−Vesicle Transition</title><source>MEDLINE</source><source>ACS Publications</source><creator>Rank, Anja ; Hauschild, Stephan ; Förster, Stephan ; Schubert, Rolf</creator><creatorcontrib>Rank, Anja ; Hauschild, Stephan ; Förster, Stephan ; Schubert, Rolf</creatorcontrib><description>In aqueous solution, poly(2-vinylpyridine-b-ethylene oxide) spontaneously forms bilayer vesicles, the size of which can be tailored by extrusion through polycarbonate membranes. However, their size can be even more precisely influenced by subjecting them to a specific cooling/warming process proceeding through a cylinder−vesicle shape transition. The thermotropic alterations of the polymer aggregates and the topological pathways of the cylinder−vesicle transition were followed by dynamic light scattering (DLS) and cryo-electron microscopy (cryo-TEM). Upon cooling the vesicles to 4 °C, there is a transition of the vesicles to basketlike aggregates and their further disintegration to wormlike micelles. Rewarming of the dispersion results in the reformation of vesicles via intermediate discoid and octopus-like structures. The variation of incubation times at 4 and 25 °C, heating rate, polymer concentration, and ionic strength allows tailored preparation of unilamellar and almost monodisperse vesicles with diameters between 60 and 500 nm. Furthermore, fluorescently labeled dextrans, which were used as model drugs of differing molar mass, could be easily and stably encapsulated during the thermotropic formation of vesicles from wormlike micelles.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la802709v</identifier><identifier>PMID: 19125559</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Colloidal state and disperse state ; Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams ; Cryoelectron Microscopy ; Desiccation ; Exact sciences and technology ; General and physical chemistry ; Membranes ; Micelles. Thin films ; Microscopy, Electron, Transmission ; Molecular Structure ; Particle Size ; Phase Transition ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Polyethylene Glycols - chemistry ; Polyvinyls - chemistry ; Surface physical chemistry ; Temperature ; Water - chemistry</subject><ispartof>Langmuir, 2009-02, Vol.25 (3), p.1337-1344</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a343t-6574d880c4c7160330a241bda65eac6dd9788ef43c19108f403db524441f92613</citedby><cites>FETCH-LOGICAL-a343t-6574d880c4c7160330a241bda65eac6dd9788ef43c19108f403db524441f92613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la802709v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la802709v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21092251$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19125559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rank, Anja</creatorcontrib><creatorcontrib>Hauschild, Stephan</creatorcontrib><creatorcontrib>Förster, Stephan</creatorcontrib><creatorcontrib>Schubert, Rolf</creatorcontrib><title>Preparation of Monodisperse Block Copolymer Vesicles via a Thermotropic Cylinder−Vesicle Transition</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>In aqueous solution, poly(2-vinylpyridine-b-ethylene oxide) spontaneously forms bilayer vesicles, the size of which can be tailored by extrusion through polycarbonate membranes. However, their size can be even more precisely influenced by subjecting them to a specific cooling/warming process proceeding through a cylinder−vesicle shape transition. The thermotropic alterations of the polymer aggregates and the topological pathways of the cylinder−vesicle transition were followed by dynamic light scattering (DLS) and cryo-electron microscopy (cryo-TEM). Upon cooling the vesicles to 4 °C, there is a transition of the vesicles to basketlike aggregates and their further disintegration to wormlike micelles. Rewarming of the dispersion results in the reformation of vesicles via intermediate discoid and octopus-like structures. The variation of incubation times at 4 and 25 °C, heating rate, polymer concentration, and ionic strength allows tailored preparation of unilamellar and almost monodisperse vesicles with diameters between 60 and 500 nm. Furthermore, fluorescently labeled dextrans, which were used as model drugs of differing molar mass, could be easily and stably encapsulated during the thermotropic formation of vesicles from wormlike micelles.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams</subject><subject>Cryoelectron Microscopy</subject><subject>Desiccation</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Membranes</subject><subject>Micelles. Thin films</subject><subject>Microscopy, Electron, Transmission</subject><subject>Molecular Structure</subject><subject>Particle Size</subject><subject>Phase Transition</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polyvinyls - chemistry</subject><subject>Surface physical chemistry</subject><subject>Temperature</subject><subject>Water - chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0M1u1DAUBWALgZhhyoIXQN6AxCJw_ZfES4haQBrULqZsI49zIzw4cbCTSvMGrPuIPElTTdTZsLqbT-fqHELeMPjIgLNP3pTAC9B3z8iaKQ6ZKnnxnKyhkCIrZC5W5FVKBwDQQuqXZMU040opvSZ4E3Ew0Ywu9DS09EfoQ-PSgDEh_eKD_U2rMAR_7DDSn5ic9ZjonTPU0N0vjF0YYxicpdXRu77B-O_v_cLoLpo-ucfkC_KiNT7h6-VuyO3V5a76lm2vv36vPm8zI6QYs1wVsilLsNIWLAchwHDJ9o3JFRqbN40uyhJbKexcAMpWgmj2ikspWat5zsSGvD_lDjH8mTCNdeeSRe9Nj2FKdZ5rEHP0DD-coI0hpYhtPUTXmXisGdSPm9ZPm8727RI67TtsznIZcQbvFmCSNb6da1uXnhxnoDlX7OyMTfUhTLGft_jPwwfxCovG</recordid><startdate>20090203</startdate><enddate>20090203</enddate><creator>Rank, Anja</creator><creator>Hauschild, Stephan</creator><creator>Förster, Stephan</creator><creator>Schubert, Rolf</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090203</creationdate><title>Preparation of Monodisperse Block Copolymer Vesicles via a Thermotropic Cylinder−Vesicle Transition</title><author>Rank, Anja ; Hauschild, Stephan ; Förster, Stephan ; Schubert, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a343t-6574d880c4c7160330a241bda65eac6dd9788ef43c19108f403db524441f92613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams</topic><topic>Cryoelectron Microscopy</topic><topic>Desiccation</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Membranes</topic><topic>Micelles. Thin films</topic><topic>Microscopy, Electron, Transmission</topic><topic>Molecular Structure</topic><topic>Particle Size</topic><topic>Phase Transition</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polyvinyls - chemistry</topic><topic>Surface physical chemistry</topic><topic>Temperature</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rank, Anja</creatorcontrib><creatorcontrib>Hauschild, Stephan</creatorcontrib><creatorcontrib>Förster, Stephan</creatorcontrib><creatorcontrib>Schubert, Rolf</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rank, Anja</au><au>Hauschild, Stephan</au><au>Förster, Stephan</au><au>Schubert, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of Monodisperse Block Copolymer Vesicles via a Thermotropic Cylinder−Vesicle Transition</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2009-02-03</date><risdate>2009</risdate><volume>25</volume><issue>3</issue><spage>1337</spage><epage>1344</epage><pages>1337-1344</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>In aqueous solution, poly(2-vinylpyridine-b-ethylene oxide) spontaneously forms bilayer vesicles, the size of which can be tailored by extrusion through polycarbonate membranes. However, their size can be even more precisely influenced by subjecting them to a specific cooling/warming process proceeding through a cylinder−vesicle shape transition. The thermotropic alterations of the polymer aggregates and the topological pathways of the cylinder−vesicle transition were followed by dynamic light scattering (DLS) and cryo-electron microscopy (cryo-TEM). Upon cooling the vesicles to 4 °C, there is a transition of the vesicles to basketlike aggregates and their further disintegration to wormlike micelles. Rewarming of the dispersion results in the reformation of vesicles via intermediate discoid and octopus-like structures. The variation of incubation times at 4 and 25 °C, heating rate, polymer concentration, and ionic strength allows tailored preparation of unilamellar and almost monodisperse vesicles with diameters between 60 and 500 nm. Furthermore, fluorescently labeled dextrans, which were used as model drugs of differing molar mass, could be easily and stably encapsulated during the thermotropic formation of vesicles from wormlike micelles.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19125559</pmid><doi>10.1021/la802709v</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2009-02, Vol.25 (3), p.1337-1344 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_66903716 |
source | MEDLINE; ACS Publications |
subjects | Chemistry Colloidal state and disperse state Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams Cryoelectron Microscopy Desiccation Exact sciences and technology General and physical chemistry Membranes Micelles. Thin films Microscopy, Electron, Transmission Molecular Structure Particle Size Phase Transition Physical and chemical studies. Granulometry. Electrokinetic phenomena Polyethylene Glycols - chemistry Polyvinyls - chemistry Surface physical chemistry Temperature Water - chemistry |
title | Preparation of Monodisperse Block Copolymer Vesicles via a Thermotropic Cylinder−Vesicle Transition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20Monodisperse%20Block%20Copolymer%20Vesicles%20via%20a%20Thermotropic%20Cylinder%E2%88%92Vesicle%20Transition&rft.jtitle=Langmuir&rft.au=Rank,%20Anja&rft.date=2009-02-03&rft.volume=25&rft.issue=3&rft.spage=1337&rft.epage=1344&rft.pages=1337-1344&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la802709v&rft_dat=%3Cproquest_cross%3E66903716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66903716&rft_id=info:pmid/19125559&rfr_iscdi=true |