Preparation of Monodisperse Block Copolymer Vesicles via a Thermotropic Cylinder−Vesicle Transition

In aqueous solution, poly(2-vinylpyridine-b-ethylene oxide) spontaneously forms bilayer vesicles, the size of which can be tailored by extrusion through polycarbonate membranes. However, their size can be even more precisely influenced by subjecting them to a specific cooling/warming process proceed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2009-02, Vol.25 (3), p.1337-1344
Hauptverfasser: Rank, Anja, Hauschild, Stephan, Förster, Stephan, Schubert, Rolf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1344
container_issue 3
container_start_page 1337
container_title Langmuir
container_volume 25
creator Rank, Anja
Hauschild, Stephan
Förster, Stephan
Schubert, Rolf
description In aqueous solution, poly(2-vinylpyridine-b-ethylene oxide) spontaneously forms bilayer vesicles, the size of which can be tailored by extrusion through polycarbonate membranes. However, their size can be even more precisely influenced by subjecting them to a specific cooling/warming process proceeding through a cylinder−vesicle shape transition. The thermotropic alterations of the polymer aggregates and the topological pathways of the cylinder−vesicle transition were followed by dynamic light scattering (DLS) and cryo-electron microscopy (cryo-TEM). Upon cooling the vesicles to 4 °C, there is a transition of the vesicles to basketlike aggregates and their further disintegration to wormlike micelles. Rewarming of the dispersion results in the reformation of vesicles via intermediate discoid and octopus-like structures. The variation of incubation times at 4 and 25 °C, heating rate, polymer concentration, and ionic strength allows tailored preparation of unilamellar and almost monodisperse vesicles with diameters between 60 and 500 nm. Furthermore, fluorescently labeled dextrans, which were used as model drugs of differing molar mass, could be easily and stably encapsulated during the thermotropic formation of vesicles from wormlike micelles.
doi_str_mv 10.1021/la802709v
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66903716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66903716</sourcerecordid><originalsourceid>FETCH-LOGICAL-a343t-6574d880c4c7160330a241bda65eac6dd9788ef43c19108f403db524441f92613</originalsourceid><addsrcrecordid>eNpt0M1u1DAUBWALgZhhyoIXQN6AxCJw_ZfES4haQBrULqZsI49zIzw4cbCTSvMGrPuIPElTTdTZsLqbT-fqHELeMPjIgLNP3pTAC9B3z8iaKQ6ZKnnxnKyhkCIrZC5W5FVKBwDQQuqXZMU040opvSZ4E3Ew0Ywu9DS09EfoQ-PSgDEh_eKD_U2rMAR_7DDSn5ic9ZjonTPU0N0vjF0YYxicpdXRu77B-O_v_cLoLpo-ucfkC_KiNT7h6-VuyO3V5a76lm2vv36vPm8zI6QYs1wVsilLsNIWLAchwHDJ9o3JFRqbN40uyhJbKexcAMpWgmj2ikspWat5zsSGvD_lDjH8mTCNdeeSRe9Nj2FKdZ5rEHP0DD-coI0hpYhtPUTXmXisGdSPm9ZPm8727RI67TtsznIZcQbvFmCSNb6da1uXnhxnoDlX7OyMTfUhTLGft_jPwwfxCovG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66903716</pqid></control><display><type>article</type><title>Preparation of Monodisperse Block Copolymer Vesicles via a Thermotropic Cylinder−Vesicle Transition</title><source>MEDLINE</source><source>ACS Publications</source><creator>Rank, Anja ; Hauschild, Stephan ; Förster, Stephan ; Schubert, Rolf</creator><creatorcontrib>Rank, Anja ; Hauschild, Stephan ; Förster, Stephan ; Schubert, Rolf</creatorcontrib><description>In aqueous solution, poly(2-vinylpyridine-b-ethylene oxide) spontaneously forms bilayer vesicles, the size of which can be tailored by extrusion through polycarbonate membranes. However, their size can be even more precisely influenced by subjecting them to a specific cooling/warming process proceeding through a cylinder−vesicle shape transition. The thermotropic alterations of the polymer aggregates and the topological pathways of the cylinder−vesicle transition were followed by dynamic light scattering (DLS) and cryo-electron microscopy (cryo-TEM). Upon cooling the vesicles to 4 °C, there is a transition of the vesicles to basketlike aggregates and their further disintegration to wormlike micelles. Rewarming of the dispersion results in the reformation of vesicles via intermediate discoid and octopus-like structures. The variation of incubation times at 4 and 25 °C, heating rate, polymer concentration, and ionic strength allows tailored preparation of unilamellar and almost monodisperse vesicles with diameters between 60 and 500 nm. Furthermore, fluorescently labeled dextrans, which were used as model drugs of differing molar mass, could be easily and stably encapsulated during the thermotropic formation of vesicles from wormlike micelles.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la802709v</identifier><identifier>PMID: 19125559</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Colloidal state and disperse state ; Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams ; Cryoelectron Microscopy ; Desiccation ; Exact sciences and technology ; General and physical chemistry ; Membranes ; Micelles. Thin films ; Microscopy, Electron, Transmission ; Molecular Structure ; Particle Size ; Phase Transition ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Polyethylene Glycols - chemistry ; Polyvinyls - chemistry ; Surface physical chemistry ; Temperature ; Water - chemistry</subject><ispartof>Langmuir, 2009-02, Vol.25 (3), p.1337-1344</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a343t-6574d880c4c7160330a241bda65eac6dd9788ef43c19108f403db524441f92613</citedby><cites>FETCH-LOGICAL-a343t-6574d880c4c7160330a241bda65eac6dd9788ef43c19108f403db524441f92613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la802709v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la802709v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21092251$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19125559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rank, Anja</creatorcontrib><creatorcontrib>Hauschild, Stephan</creatorcontrib><creatorcontrib>Förster, Stephan</creatorcontrib><creatorcontrib>Schubert, Rolf</creatorcontrib><title>Preparation of Monodisperse Block Copolymer Vesicles via a Thermotropic Cylinder−Vesicle Transition</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>In aqueous solution, poly(2-vinylpyridine-b-ethylene oxide) spontaneously forms bilayer vesicles, the size of which can be tailored by extrusion through polycarbonate membranes. However, their size can be even more precisely influenced by subjecting them to a specific cooling/warming process proceeding through a cylinder−vesicle shape transition. The thermotropic alterations of the polymer aggregates and the topological pathways of the cylinder−vesicle transition were followed by dynamic light scattering (DLS) and cryo-electron microscopy (cryo-TEM). Upon cooling the vesicles to 4 °C, there is a transition of the vesicles to basketlike aggregates and their further disintegration to wormlike micelles. Rewarming of the dispersion results in the reformation of vesicles via intermediate discoid and octopus-like structures. The variation of incubation times at 4 and 25 °C, heating rate, polymer concentration, and ionic strength allows tailored preparation of unilamellar and almost monodisperse vesicles with diameters between 60 and 500 nm. Furthermore, fluorescently labeled dextrans, which were used as model drugs of differing molar mass, could be easily and stably encapsulated during the thermotropic formation of vesicles from wormlike micelles.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams</subject><subject>Cryoelectron Microscopy</subject><subject>Desiccation</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Membranes</subject><subject>Micelles. Thin films</subject><subject>Microscopy, Electron, Transmission</subject><subject>Molecular Structure</subject><subject>Particle Size</subject><subject>Phase Transition</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polyvinyls - chemistry</subject><subject>Surface physical chemistry</subject><subject>Temperature</subject><subject>Water - chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0M1u1DAUBWALgZhhyoIXQN6AxCJw_ZfES4haQBrULqZsI49zIzw4cbCTSvMGrPuIPElTTdTZsLqbT-fqHELeMPjIgLNP3pTAC9B3z8iaKQ6ZKnnxnKyhkCIrZC5W5FVKBwDQQuqXZMU040opvSZ4E3Ew0Ywu9DS09EfoQ-PSgDEh_eKD_U2rMAR_7DDSn5ic9ZjonTPU0N0vjF0YYxicpdXRu77B-O_v_cLoLpo-ucfkC_KiNT7h6-VuyO3V5a76lm2vv36vPm8zI6QYs1wVsilLsNIWLAchwHDJ9o3JFRqbN40uyhJbKexcAMpWgmj2ikspWat5zsSGvD_lDjH8mTCNdeeSRe9Nj2FKdZ5rEHP0DD-coI0hpYhtPUTXmXisGdSPm9ZPm8727RI67TtsznIZcQbvFmCSNb6da1uXnhxnoDlX7OyMTfUhTLGft_jPwwfxCovG</recordid><startdate>20090203</startdate><enddate>20090203</enddate><creator>Rank, Anja</creator><creator>Hauschild, Stephan</creator><creator>Förster, Stephan</creator><creator>Schubert, Rolf</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090203</creationdate><title>Preparation of Monodisperse Block Copolymer Vesicles via a Thermotropic Cylinder−Vesicle Transition</title><author>Rank, Anja ; Hauschild, Stephan ; Förster, Stephan ; Schubert, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a343t-6574d880c4c7160330a241bda65eac6dd9788ef43c19108f403db524441f92613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams</topic><topic>Cryoelectron Microscopy</topic><topic>Desiccation</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Membranes</topic><topic>Micelles. Thin films</topic><topic>Microscopy, Electron, Transmission</topic><topic>Molecular Structure</topic><topic>Particle Size</topic><topic>Phase Transition</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polyvinyls - chemistry</topic><topic>Surface physical chemistry</topic><topic>Temperature</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rank, Anja</creatorcontrib><creatorcontrib>Hauschild, Stephan</creatorcontrib><creatorcontrib>Förster, Stephan</creatorcontrib><creatorcontrib>Schubert, Rolf</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rank, Anja</au><au>Hauschild, Stephan</au><au>Förster, Stephan</au><au>Schubert, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of Monodisperse Block Copolymer Vesicles via a Thermotropic Cylinder−Vesicle Transition</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2009-02-03</date><risdate>2009</risdate><volume>25</volume><issue>3</issue><spage>1337</spage><epage>1344</epage><pages>1337-1344</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>In aqueous solution, poly(2-vinylpyridine-b-ethylene oxide) spontaneously forms bilayer vesicles, the size of which can be tailored by extrusion through polycarbonate membranes. However, their size can be even more precisely influenced by subjecting them to a specific cooling/warming process proceeding through a cylinder−vesicle shape transition. The thermotropic alterations of the polymer aggregates and the topological pathways of the cylinder−vesicle transition were followed by dynamic light scattering (DLS) and cryo-electron microscopy (cryo-TEM). Upon cooling the vesicles to 4 °C, there is a transition of the vesicles to basketlike aggregates and their further disintegration to wormlike micelles. Rewarming of the dispersion results in the reformation of vesicles via intermediate discoid and octopus-like structures. The variation of incubation times at 4 and 25 °C, heating rate, polymer concentration, and ionic strength allows tailored preparation of unilamellar and almost monodisperse vesicles with diameters between 60 and 500 nm. Furthermore, fluorescently labeled dextrans, which were used as model drugs of differing molar mass, could be easily and stably encapsulated during the thermotropic formation of vesicles from wormlike micelles.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19125559</pmid><doi>10.1021/la802709v</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2009-02, Vol.25 (3), p.1337-1344
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_66903716
source MEDLINE; ACS Publications
subjects Chemistry
Colloidal state and disperse state
Colloids: Surfactants and Self-Assembly, Dispersions, Emulsions, Foams
Cryoelectron Microscopy
Desiccation
Exact sciences and technology
General and physical chemistry
Membranes
Micelles. Thin films
Microscopy, Electron, Transmission
Molecular Structure
Particle Size
Phase Transition
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Polyethylene Glycols - chemistry
Polyvinyls - chemistry
Surface physical chemistry
Temperature
Water - chemistry
title Preparation of Monodisperse Block Copolymer Vesicles via a Thermotropic Cylinder−Vesicle Transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20Monodisperse%20Block%20Copolymer%20Vesicles%20via%20a%20Thermotropic%20Cylinder%E2%88%92Vesicle%20Transition&rft.jtitle=Langmuir&rft.au=Rank,%20Anja&rft.date=2009-02-03&rft.volume=25&rft.issue=3&rft.spage=1337&rft.epage=1344&rft.pages=1337-1344&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la802709v&rft_dat=%3Cproquest_cross%3E66903716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66903716&rft_id=info:pmid/19125559&rfr_iscdi=true