Toward large-scale modeling of the microbial cell for computer simulation

In the post-genomic era, the large-scale, systematic, and functional analysis of all cellular components using transcriptomics, proteomics, and metabolomics, together with bioinformatics for the analysis of the massive amount of data generated by these “omics” methods are the focus of intensive rese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biotechnology 2004-09, Vol.113 (1), p.281-294
Hauptverfasser: Ishii, Nobuyoshi, Robert, Martin, Nakayama, Yoichi, Kanai, Akio, Tomita, Masaru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 294
container_issue 1
container_start_page 281
container_title Journal of biotechnology
container_volume 113
creator Ishii, Nobuyoshi
Robert, Martin
Nakayama, Yoichi
Kanai, Akio
Tomita, Masaru
description In the post-genomic era, the large-scale, systematic, and functional analysis of all cellular components using transcriptomics, proteomics, and metabolomics, together with bioinformatics for the analysis of the massive amount of data generated by these “omics” methods are the focus of intensive research activities. As a consequence of these developments, systems biology, whose goal is to comprehend the organism as a complex system arising from interactions between its multiple elements, becomes a more tangible objective. Mathematical modeling of microorganisms and subsequent computer simulations are effective tools for systems biology, which will lead to a better understanding of the microbial cell and will have immense ramifications for biological, medical, environmental sciences, and the pharmaceutical industry. In this review, we describe various types of mathematical models (structured, unstructured, static, dynamic, etc.), of microorganisms that have been in use for a while, and others that are emerging. Several biochemical/cellular simulation platforms to manipulate such models are summarized and the E-Cell system 1 1 The E-Cell software environment described in this article is freely available at http://ecell.sourceforge.net/. developed in our laboratory is introduced. Finally, our strategy for building a “whole cell metabolism model”, including the experimental approach, is presented.
doi_str_mv 10.1016/j.jbiotec.2004.04.038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66898409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168165604003190</els_id><sourcerecordid>20225000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-f86ecbd3a397b6860eba2d4be48a691ccd8a8c9a2f8e2b70f86dcae1b6e00bd53</originalsourceid><addsrcrecordid>eNqFkFtLwzAUgIMobk5_gtIXfetMmjZLn0SGl8HAl_kccjmdGW0zk1bx35uywh4HBw4HvnP7ELoleE4wYY-7-U5Z14GeZxjn8yEoP0NTwhc0zTmj52gaOZ4SVrAJugphhyNYFuQSTUhBOWaMTNFq436lN0kt_RbSoGUNSeMM1LbdJq5Kuq9YW-2dsrJONNR1UjmfaNfs-w58EmzT17Kzrr1GF5WsA9yMeYY-X182y_d0_fG2Wj6vU11kRZdWnIFWhkpaLhTjDIOSmckV5FyykmhtuOS6lFnFIVMLHHmjJRDFAGNlCjpDD4e5e---ewidaGwYDpMtuD4IxnjJc1yeBDOcZUV0EsHiAMY3Q_BQib23jfR_gmAxyBY7McoWg2wxBOWx725c0KsGzLFrtBuB-xGQg9nKy1bbcOQYyRec0Mg9HTiI3n4seBG0hVaDsR50J4yzJ075B0o3oPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20225000</pqid></control><display><type>article</type><title>Toward large-scale modeling of the microbial cell for computer simulation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ishii, Nobuyoshi ; Robert, Martin ; Nakayama, Yoichi ; Kanai, Akio ; Tomita, Masaru</creator><creatorcontrib>Ishii, Nobuyoshi ; Robert, Martin ; Nakayama, Yoichi ; Kanai, Akio ; Tomita, Masaru</creatorcontrib><description>In the post-genomic era, the large-scale, systematic, and functional analysis of all cellular components using transcriptomics, proteomics, and metabolomics, together with bioinformatics for the analysis of the massive amount of data generated by these “omics” methods are the focus of intensive research activities. As a consequence of these developments, systems biology, whose goal is to comprehend the organism as a complex system arising from interactions between its multiple elements, becomes a more tangible objective. Mathematical modeling of microorganisms and subsequent computer simulations are effective tools for systems biology, which will lead to a better understanding of the microbial cell and will have immense ramifications for biological, medical, environmental sciences, and the pharmaceutical industry. In this review, we describe various types of mathematical models (structured, unstructured, static, dynamic, etc.), of microorganisms that have been in use for a while, and others that are emerging. Several biochemical/cellular simulation platforms to manipulate such models are summarized and the E-Cell system 1 1 The E-Cell software environment described in this article is freely available at http://ecell.sourceforge.net/. developed in our laboratory is introduced. Finally, our strategy for building a “whole cell metabolism model”, including the experimental approach, is presented.</description><identifier>ISSN: 0168-1656</identifier><identifier>EISSN: 1873-4863</identifier><identifier>DOI: 10.1016/j.jbiotec.2004.04.038</identifier><identifier>PMID: 15380661</identifier><identifier>CODEN: JBITD4</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Bioinformatics ; Biological and medical sciences ; Biotechnology ; Biotechnology - methods ; Computational Biology - methods ; Computer Simulation ; Escherichia coli - physiology ; Fundamental and applied biological sciences. Psychology ; Mathematical model ; Metabolic engineering ; Metabolome ; Models, Biological ; Systems biology</subject><ispartof>Journal of biotechnology, 2004-09, Vol.113 (1), p.281-294</ispartof><rights>2004 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-f86ecbd3a397b6860eba2d4be48a691ccd8a8c9a2f8e2b70f86dcae1b6e00bd53</citedby><cites>FETCH-LOGICAL-c525t-f86ecbd3a397b6860eba2d4be48a691ccd8a8c9a2f8e2b70f86dcae1b6e00bd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168165604003190$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16147813$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15380661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishii, Nobuyoshi</creatorcontrib><creatorcontrib>Robert, Martin</creatorcontrib><creatorcontrib>Nakayama, Yoichi</creatorcontrib><creatorcontrib>Kanai, Akio</creatorcontrib><creatorcontrib>Tomita, Masaru</creatorcontrib><title>Toward large-scale modeling of the microbial cell for computer simulation</title><title>Journal of biotechnology</title><addtitle>J Biotechnol</addtitle><description>In the post-genomic era, the large-scale, systematic, and functional analysis of all cellular components using transcriptomics, proteomics, and metabolomics, together with bioinformatics for the analysis of the massive amount of data generated by these “omics” methods are the focus of intensive research activities. As a consequence of these developments, systems biology, whose goal is to comprehend the organism as a complex system arising from interactions between its multiple elements, becomes a more tangible objective. Mathematical modeling of microorganisms and subsequent computer simulations are effective tools for systems biology, which will lead to a better understanding of the microbial cell and will have immense ramifications for biological, medical, environmental sciences, and the pharmaceutical industry. In this review, we describe various types of mathematical models (structured, unstructured, static, dynamic, etc.), of microorganisms that have been in use for a while, and others that are emerging. Several biochemical/cellular simulation platforms to manipulate such models are summarized and the E-Cell system 1 1 The E-Cell software environment described in this article is freely available at http://ecell.sourceforge.net/. developed in our laboratory is introduced. Finally, our strategy for building a “whole cell metabolism model”, including the experimental approach, is presented.</description><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Biotechnology - methods</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Escherichia coli - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Mathematical model</subject><subject>Metabolic engineering</subject><subject>Metabolome</subject><subject>Models, Biological</subject><subject>Systems biology</subject><issn>0168-1656</issn><issn>1873-4863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkFtLwzAUgIMobk5_gtIXfetMmjZLn0SGl8HAl_kccjmdGW0zk1bx35uywh4HBw4HvnP7ELoleE4wYY-7-U5Z14GeZxjn8yEoP0NTwhc0zTmj52gaOZ4SVrAJugphhyNYFuQSTUhBOWaMTNFq436lN0kt_RbSoGUNSeMM1LbdJq5Kuq9YW-2dsrJONNR1UjmfaNfs-w58EmzT17Kzrr1GF5WsA9yMeYY-X182y_d0_fG2Wj6vU11kRZdWnIFWhkpaLhTjDIOSmckV5FyykmhtuOS6lFnFIVMLHHmjJRDFAGNlCjpDD4e5e---ewidaGwYDpMtuD4IxnjJc1yeBDOcZUV0EsHiAMY3Q_BQib23jfR_gmAxyBY7McoWg2wxBOWx725c0KsGzLFrtBuB-xGQg9nKy1bbcOQYyRec0Mg9HTiI3n4seBG0hVaDsR50J4yzJ075B0o3oPk</recordid><startdate>20040930</startdate><enddate>20040930</enddate><creator>Ishii, Nobuyoshi</creator><creator>Robert, Martin</creator><creator>Nakayama, Yoichi</creator><creator>Kanai, Akio</creator><creator>Tomita, Masaru</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20040930</creationdate><title>Toward large-scale modeling of the microbial cell for computer simulation</title><author>Ishii, Nobuyoshi ; Robert, Martin ; Nakayama, Yoichi ; Kanai, Akio ; Tomita, Masaru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-f86ecbd3a397b6860eba2d4be48a691ccd8a8c9a2f8e2b70f86dcae1b6e00bd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Biotechnology - methods</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Escherichia coli - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Mathematical model</topic><topic>Metabolic engineering</topic><topic>Metabolome</topic><topic>Models, Biological</topic><topic>Systems biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishii, Nobuyoshi</creatorcontrib><creatorcontrib>Robert, Martin</creatorcontrib><creatorcontrib>Nakayama, Yoichi</creatorcontrib><creatorcontrib>Kanai, Akio</creatorcontrib><creatorcontrib>Tomita, Masaru</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishii, Nobuyoshi</au><au>Robert, Martin</au><au>Nakayama, Yoichi</au><au>Kanai, Akio</au><au>Tomita, Masaru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward large-scale modeling of the microbial cell for computer simulation</atitle><jtitle>Journal of biotechnology</jtitle><addtitle>J Biotechnol</addtitle><date>2004-09-30</date><risdate>2004</risdate><volume>113</volume><issue>1</issue><spage>281</spage><epage>294</epage><pages>281-294</pages><issn>0168-1656</issn><eissn>1873-4863</eissn><coden>JBITD4</coden><abstract>In the post-genomic era, the large-scale, systematic, and functional analysis of all cellular components using transcriptomics, proteomics, and metabolomics, together with bioinformatics for the analysis of the massive amount of data generated by these “omics” methods are the focus of intensive research activities. As a consequence of these developments, systems biology, whose goal is to comprehend the organism as a complex system arising from interactions between its multiple elements, becomes a more tangible objective. Mathematical modeling of microorganisms and subsequent computer simulations are effective tools for systems biology, which will lead to a better understanding of the microbial cell and will have immense ramifications for biological, medical, environmental sciences, and the pharmaceutical industry. In this review, we describe various types of mathematical models (structured, unstructured, static, dynamic, etc.), of microorganisms that have been in use for a while, and others that are emerging. Several biochemical/cellular simulation platforms to manipulate such models are summarized and the E-Cell system 1 1 The E-Cell software environment described in this article is freely available at http://ecell.sourceforge.net/. developed in our laboratory is introduced. Finally, our strategy for building a “whole cell metabolism model”, including the experimental approach, is presented.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>15380661</pmid><doi>10.1016/j.jbiotec.2004.04.038</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-1656
ispartof Journal of biotechnology, 2004-09, Vol.113 (1), p.281-294
issn 0168-1656
1873-4863
language eng
recordid cdi_proquest_miscellaneous_66898409
source MEDLINE; Elsevier ScienceDirect Journals
subjects Bioinformatics
Biological and medical sciences
Biotechnology
Biotechnology - methods
Computational Biology - methods
Computer Simulation
Escherichia coli - physiology
Fundamental and applied biological sciences. Psychology
Mathematical model
Metabolic engineering
Metabolome
Models, Biological
Systems biology
title Toward large-scale modeling of the microbial cell for computer simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20large-scale%20modeling%20of%20the%20microbial%20cell%20for%20computer%20simulation&rft.jtitle=Journal%20of%20biotechnology&rft.au=Ishii,%20Nobuyoshi&rft.date=2004-09-30&rft.volume=113&rft.issue=1&rft.spage=281&rft.epage=294&rft.pages=281-294&rft.issn=0168-1656&rft.eissn=1873-4863&rft.coden=JBITD4&rft_id=info:doi/10.1016/j.jbiotec.2004.04.038&rft_dat=%3Cproquest_cross%3E20225000%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20225000&rft_id=info:pmid/15380661&rft_els_id=S0168165604003190&rfr_iscdi=true