Regulation of myocardial heat shock protein 70 gene expression following exercise

Post-exercise induction of myocardial heat shock protein (Hsp70) gene expression involves the activation of the heat shock transcription factor (HSF1). While the exact mechanisms governing the regulation of HSF1 are unclear, activation is believed to occur subsequent to hyperphosphorylation of speci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular and cellular cardiology 2004-10, Vol.37 (4), p.847-855
Hauptverfasser: James Melling, C.W., Thorp, David B., Noble, Earl G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 855
container_issue 4
container_start_page 847
container_title Journal of molecular and cellular cardiology
container_volume 37
creator James Melling, C.W.
Thorp, David B.
Noble, Earl G.
description Post-exercise induction of myocardial heat shock protein (Hsp70) gene expression involves the activation of the heat shock transcription factor (HSF1). While the exact mechanisms governing the regulation of HSF1 are unclear, activation is believed to occur subsequent to hyperphosphorylation of specific serine residues. As two important serine kinases, protein kinase A (PKA) and protein kinase C (PKC), have been implicated in many phosphorylative events in myocardial cells, we examined the role of these kinases in the activation of Hsp70 gene expression following exercise. In this report, we show that prior administration of a PKA inhibitor, N-[2-( p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide 2HCl (H-89; 0.36 mg/kg), significantly suppressed the elevation in Hsp70 mRNA ( P 
doi_str_mv 10.1016/j.yjmcc.2004.05.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66897385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022282804001622</els_id><sourcerecordid>66897385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-3c09061e8c33963e5629142c399132810d112e5e57000e38d3e50b33962104b63</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EoqVwAiSUFbuEsR0nzoIFqnhJlZAqWFupM20dkrjYKdDbcBZOhksrsWM10uj75_ERck4hoUCzqzrZ1K3WCQNIExAJMHpAhhQKEUsh00MyBGAsZpLJATnxvgaAIuX8mAyo4BKyXAzJdIqLdVP2xnaRnUftxurSVaZsoiWWfeSXVr9GK2d7NF2Uw_fXAjuM8HPl0PttaG6bxn6YbhGa6LTxeEqO5mXj8WxfR-Tl7vZ5_BBPnu4fxzeTWHMh-phrKCCjKDXnRcZRZKygKdO8KChnkkJFKUOBIg93I5dVQGC2ZRmFdJbxEbnczQ3nva3R96o1XmPTlB3atVdZJoucSxFAvgO1s947nKuVM23pNoqC2qpUtfpVqbYqFQgVVIbUxX78etZi9ZfZuwvA9Q7A8OS7Qae8NthprIxD3avKmn8X_AAzqoVE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66897385</pqid></control><display><type>article</type><title>Regulation of myocardial heat shock protein 70 gene expression following exercise</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>James Melling, C.W. ; Thorp, David B. ; Noble, Earl G.</creator><creatorcontrib>James Melling, C.W. ; Thorp, David B. ; Noble, Earl G.</creatorcontrib><description>Post-exercise induction of myocardial heat shock protein (Hsp70) gene expression involves the activation of the heat shock transcription factor (HSF1). While the exact mechanisms governing the regulation of HSF1 are unclear, activation is believed to occur subsequent to hyperphosphorylation of specific serine residues. As two important serine kinases, protein kinase A (PKA) and protein kinase C (PKC), have been implicated in many phosphorylative events in myocardial cells, we examined the role of these kinases in the activation of Hsp70 gene expression following exercise. In this report, we show that prior administration of a PKA inhibitor, N-[2-( p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide 2HCl (H-89; 0.36 mg/kg), significantly suppressed the elevation in Hsp70 mRNA ( P &lt; 0.05) and protein synthesis ( P &lt; 0.05) in male Sprague–Dawley rats following a single bout of exercise. In contrast, this post-exercise elevation in Hsp70 mRNA and protein synthesis was not suppressed following the administration of a PKC inhibitor chelerythrine chloride (CHEL; 5 mg/kg) ( P &lt; 0.05). Of note, inhibition of PKA did not alter the nuclear localization and binding affinity of HSF1 to the promotor region of the Hsp70 gene. These data indicate that PKA, and not PKC, plays a necessary role in the early exercise-induced regulation of Hsp70 gene expression, downstream of DNA-binding acquisition. However, the current study does not support previous observations regarding major changes in HSF1 phosphorylation and suggests that other PKA-related mechanisms mediate the activation of Hsp70 gene expression following exercise.</description><identifier>ISSN: 0022-2828</identifier><identifier>EISSN: 1095-8584</identifier><identifier>DOI: 10.1016/j.yjmcc.2004.05.021</identifier><identifier>PMID: 15380675</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Body Temperature ; Cell Nucleus - chemistry ; Cyclic AMP-Dependent Protein Kinases - antagonists &amp; inhibitors ; Cyclic AMP-Dependent Protein Kinases - physiology ; Cytoplasm - chemistry ; DNA-Binding Proteins - analysis ; DNA-Binding Proteins - metabolism ; Electrophoretic Mobility Shift Assay ; Gene Expression Regulation ; Glycogen - analysis ; Glycogen - metabolism ; Heat shock transcription factor 1 ; Heat Shock Transcription Factors ; HSP70 Heat-Shock Proteins - genetics ; HSP70 Heat-Shock Proteins - metabolism ; Intracellular signaling ; Isoquinolines - pharmacology ; Male ; Myocardium - chemistry ; Myocardium - metabolism ; Phosphorylation ; Physical Conditioning, Animal ; Protein kinase A ; Protein kinase C ; Protein Kinase C - antagonists &amp; inhibitors ; Protein Kinase C - physiology ; Protein Kinase Inhibitors - pharmacology ; Rats ; Rats, Sprague-Dawley ; Sulfonamides - pharmacology ; Transcription Factors</subject><ispartof>Journal of molecular and cellular cardiology, 2004-10, Vol.37 (4), p.847-855</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-3c09061e8c33963e5629142c399132810d112e5e57000e38d3e50b33962104b63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022282804001622$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15380675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>James Melling, C.W.</creatorcontrib><creatorcontrib>Thorp, David B.</creatorcontrib><creatorcontrib>Noble, Earl G.</creatorcontrib><title>Regulation of myocardial heat shock protein 70 gene expression following exercise</title><title>Journal of molecular and cellular cardiology</title><addtitle>J Mol Cell Cardiol</addtitle><description>Post-exercise induction of myocardial heat shock protein (Hsp70) gene expression involves the activation of the heat shock transcription factor (HSF1). While the exact mechanisms governing the regulation of HSF1 are unclear, activation is believed to occur subsequent to hyperphosphorylation of specific serine residues. As two important serine kinases, protein kinase A (PKA) and protein kinase C (PKC), have been implicated in many phosphorylative events in myocardial cells, we examined the role of these kinases in the activation of Hsp70 gene expression following exercise. In this report, we show that prior administration of a PKA inhibitor, N-[2-( p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide 2HCl (H-89; 0.36 mg/kg), significantly suppressed the elevation in Hsp70 mRNA ( P &lt; 0.05) and protein synthesis ( P &lt; 0.05) in male Sprague–Dawley rats following a single bout of exercise. In contrast, this post-exercise elevation in Hsp70 mRNA and protein synthesis was not suppressed following the administration of a PKC inhibitor chelerythrine chloride (CHEL; 5 mg/kg) ( P &lt; 0.05). Of note, inhibition of PKA did not alter the nuclear localization and binding affinity of HSF1 to the promotor region of the Hsp70 gene. These data indicate that PKA, and not PKC, plays a necessary role in the early exercise-induced regulation of Hsp70 gene expression, downstream of DNA-binding acquisition. However, the current study does not support previous observations regarding major changes in HSF1 phosphorylation and suggests that other PKA-related mechanisms mediate the activation of Hsp70 gene expression following exercise.</description><subject>Animals</subject><subject>Body Temperature</subject><subject>Cell Nucleus - chemistry</subject><subject>Cyclic AMP-Dependent Protein Kinases - antagonists &amp; inhibitors</subject><subject>Cyclic AMP-Dependent Protein Kinases - physiology</subject><subject>Cytoplasm - chemistry</subject><subject>DNA-Binding Proteins - analysis</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>Gene Expression Regulation</subject><subject>Glycogen - analysis</subject><subject>Glycogen - metabolism</subject><subject>Heat shock transcription factor 1</subject><subject>Heat Shock Transcription Factors</subject><subject>HSP70 Heat-Shock Proteins - genetics</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>Intracellular signaling</subject><subject>Isoquinolines - pharmacology</subject><subject>Male</subject><subject>Myocardium - chemistry</subject><subject>Myocardium - metabolism</subject><subject>Phosphorylation</subject><subject>Physical Conditioning, Animal</subject><subject>Protein kinase A</subject><subject>Protein kinase C</subject><subject>Protein Kinase C - antagonists &amp; inhibitors</subject><subject>Protein Kinase C - physiology</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sulfonamides - pharmacology</subject><subject>Transcription Factors</subject><issn>0022-2828</issn><issn>1095-8584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtOwzAQhi0EoqVwAiSUFbuEsR0nzoIFqnhJlZAqWFupM20dkrjYKdDbcBZOhksrsWM10uj75_ERck4hoUCzqzrZ1K3WCQNIExAJMHpAhhQKEUsh00MyBGAsZpLJATnxvgaAIuX8mAyo4BKyXAzJdIqLdVP2xnaRnUftxurSVaZsoiWWfeSXVr9GK2d7NF2Uw_fXAjuM8HPl0PttaG6bxn6YbhGa6LTxeEqO5mXj8WxfR-Tl7vZ5_BBPnu4fxzeTWHMh-phrKCCjKDXnRcZRZKygKdO8KChnkkJFKUOBIg93I5dVQGC2ZRmFdJbxEbnczQ3nva3R96o1XmPTlB3atVdZJoucSxFAvgO1s947nKuVM23pNoqC2qpUtfpVqbYqFQgVVIbUxX78etZi9ZfZuwvA9Q7A8OS7Qae8NthprIxD3avKmn8X_AAzqoVE</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>James Melling, C.W.</creator><creator>Thorp, David B.</creator><creator>Noble, Earl G.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20041001</creationdate><title>Regulation of myocardial heat shock protein 70 gene expression following exercise</title><author>James Melling, C.W. ; Thorp, David B. ; Noble, Earl G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-3c09061e8c33963e5629142c399132810d112e5e57000e38d3e50b33962104b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Body Temperature</topic><topic>Cell Nucleus - chemistry</topic><topic>Cyclic AMP-Dependent Protein Kinases - antagonists &amp; inhibitors</topic><topic>Cyclic AMP-Dependent Protein Kinases - physiology</topic><topic>Cytoplasm - chemistry</topic><topic>DNA-Binding Proteins - analysis</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>Gene Expression Regulation</topic><topic>Glycogen - analysis</topic><topic>Glycogen - metabolism</topic><topic>Heat shock transcription factor 1</topic><topic>Heat Shock Transcription Factors</topic><topic>HSP70 Heat-Shock Proteins - genetics</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>Intracellular signaling</topic><topic>Isoquinolines - pharmacology</topic><topic>Male</topic><topic>Myocardium - chemistry</topic><topic>Myocardium - metabolism</topic><topic>Phosphorylation</topic><topic>Physical Conditioning, Animal</topic><topic>Protein kinase A</topic><topic>Protein kinase C</topic><topic>Protein Kinase C - antagonists &amp; inhibitors</topic><topic>Protein Kinase C - physiology</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sulfonamides - pharmacology</topic><topic>Transcription Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>James Melling, C.W.</creatorcontrib><creatorcontrib>Thorp, David B.</creatorcontrib><creatorcontrib>Noble, Earl G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular and cellular cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>James Melling, C.W.</au><au>Thorp, David B.</au><au>Noble, Earl G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of myocardial heat shock protein 70 gene expression following exercise</atitle><jtitle>Journal of molecular and cellular cardiology</jtitle><addtitle>J Mol Cell Cardiol</addtitle><date>2004-10-01</date><risdate>2004</risdate><volume>37</volume><issue>4</issue><spage>847</spage><epage>855</epage><pages>847-855</pages><issn>0022-2828</issn><eissn>1095-8584</eissn><abstract>Post-exercise induction of myocardial heat shock protein (Hsp70) gene expression involves the activation of the heat shock transcription factor (HSF1). While the exact mechanisms governing the regulation of HSF1 are unclear, activation is believed to occur subsequent to hyperphosphorylation of specific serine residues. As two important serine kinases, protein kinase A (PKA) and protein kinase C (PKC), have been implicated in many phosphorylative events in myocardial cells, we examined the role of these kinases in the activation of Hsp70 gene expression following exercise. In this report, we show that prior administration of a PKA inhibitor, N-[2-( p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide 2HCl (H-89; 0.36 mg/kg), significantly suppressed the elevation in Hsp70 mRNA ( P &lt; 0.05) and protein synthesis ( P &lt; 0.05) in male Sprague–Dawley rats following a single bout of exercise. In contrast, this post-exercise elevation in Hsp70 mRNA and protein synthesis was not suppressed following the administration of a PKC inhibitor chelerythrine chloride (CHEL; 5 mg/kg) ( P &lt; 0.05). Of note, inhibition of PKA did not alter the nuclear localization and binding affinity of HSF1 to the promotor region of the Hsp70 gene. These data indicate that PKA, and not PKC, plays a necessary role in the early exercise-induced regulation of Hsp70 gene expression, downstream of DNA-binding acquisition. However, the current study does not support previous observations regarding major changes in HSF1 phosphorylation and suggests that other PKA-related mechanisms mediate the activation of Hsp70 gene expression following exercise.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>15380675</pmid><doi>10.1016/j.yjmcc.2004.05.021</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2828
ispartof Journal of molecular and cellular cardiology, 2004-10, Vol.37 (4), p.847-855
issn 0022-2828
1095-8584
language eng
recordid cdi_proquest_miscellaneous_66897385
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Body Temperature
Cell Nucleus - chemistry
Cyclic AMP-Dependent Protein Kinases - antagonists & inhibitors
Cyclic AMP-Dependent Protein Kinases - physiology
Cytoplasm - chemistry
DNA-Binding Proteins - analysis
DNA-Binding Proteins - metabolism
Electrophoretic Mobility Shift Assay
Gene Expression Regulation
Glycogen - analysis
Glycogen - metabolism
Heat shock transcription factor 1
Heat Shock Transcription Factors
HSP70 Heat-Shock Proteins - genetics
HSP70 Heat-Shock Proteins - metabolism
Intracellular signaling
Isoquinolines - pharmacology
Male
Myocardium - chemistry
Myocardium - metabolism
Phosphorylation
Physical Conditioning, Animal
Protein kinase A
Protein kinase C
Protein Kinase C - antagonists & inhibitors
Protein Kinase C - physiology
Protein Kinase Inhibitors - pharmacology
Rats
Rats, Sprague-Dawley
Sulfonamides - pharmacology
Transcription Factors
title Regulation of myocardial heat shock protein 70 gene expression following exercise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20myocardial%20heat%20shock%20protein%2070%C2%A0gene%20expression%20following%20exercise&rft.jtitle=Journal%20of%20molecular%20and%20cellular%20cardiology&rft.au=James%20Melling,%20C.W.&rft.date=2004-10-01&rft.volume=37&rft.issue=4&rft.spage=847&rft.epage=855&rft.pages=847-855&rft.issn=0022-2828&rft.eissn=1095-8584&rft_id=info:doi/10.1016/j.yjmcc.2004.05.021&rft_dat=%3Cproquest_cross%3E66897385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66897385&rft_id=info:pmid/15380675&rft_els_id=S0022282804001622&rfr_iscdi=true