Regulation of myocardial heat shock protein 70 gene expression following exercise
Post-exercise induction of myocardial heat shock protein (Hsp70) gene expression involves the activation of the heat shock transcription factor (HSF1). While the exact mechanisms governing the regulation of HSF1 are unclear, activation is believed to occur subsequent to hyperphosphorylation of speci...
Gespeichert in:
Veröffentlicht in: | Journal of molecular and cellular cardiology 2004-10, Vol.37 (4), p.847-855 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 855 |
---|---|
container_issue | 4 |
container_start_page | 847 |
container_title | Journal of molecular and cellular cardiology |
container_volume | 37 |
creator | James Melling, C.W. Thorp, David B. Noble, Earl G. |
description | Post-exercise induction of myocardial heat shock protein (Hsp70) gene expression involves the activation of the heat shock transcription factor (HSF1). While the exact mechanisms governing the regulation of HSF1 are unclear, activation is believed to occur subsequent to hyperphosphorylation of specific serine residues. As two important serine kinases, protein kinase A (PKA) and protein kinase C (PKC), have been implicated in many phosphorylative events in myocardial cells, we examined the role of these kinases in the activation of Hsp70 gene expression following exercise. In this report, we show that prior administration of a PKA inhibitor,
N-[2-(
p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide 2HCl (H-89; 0.36 mg/kg), significantly suppressed the elevation in Hsp70 mRNA (
P |
doi_str_mv | 10.1016/j.yjmcc.2004.05.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66897385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022282804001622</els_id><sourcerecordid>66897385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-3c09061e8c33963e5629142c399132810d112e5e57000e38d3e50b33962104b63</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EoqVwAiSUFbuEsR0nzoIFqnhJlZAqWFupM20dkrjYKdDbcBZOhksrsWM10uj75_ERck4hoUCzqzrZ1K3WCQNIExAJMHpAhhQKEUsh00MyBGAsZpLJATnxvgaAIuX8mAyo4BKyXAzJdIqLdVP2xnaRnUftxurSVaZsoiWWfeSXVr9GK2d7NF2Uw_fXAjuM8HPl0PttaG6bxn6YbhGa6LTxeEqO5mXj8WxfR-Tl7vZ5_BBPnu4fxzeTWHMh-phrKCCjKDXnRcZRZKygKdO8KChnkkJFKUOBIg93I5dVQGC2ZRmFdJbxEbnczQ3nva3R96o1XmPTlB3atVdZJoucSxFAvgO1s947nKuVM23pNoqC2qpUtfpVqbYqFQgVVIbUxX78etZi9ZfZuwvA9Q7A8OS7Qae8NthprIxD3avKmn8X_AAzqoVE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66897385</pqid></control><display><type>article</type><title>Regulation of myocardial heat shock protein 70 gene expression following exercise</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>James Melling, C.W. ; Thorp, David B. ; Noble, Earl G.</creator><creatorcontrib>James Melling, C.W. ; Thorp, David B. ; Noble, Earl G.</creatorcontrib><description>Post-exercise induction of myocardial heat shock protein (Hsp70) gene expression involves the activation of the heat shock transcription factor (HSF1). While the exact mechanisms governing the regulation of HSF1 are unclear, activation is believed to occur subsequent to hyperphosphorylation of specific serine residues. As two important serine kinases, protein kinase A (PKA) and protein kinase C (PKC), have been implicated in many phosphorylative events in myocardial cells, we examined the role of these kinases in the activation of Hsp70 gene expression following exercise. In this report, we show that prior administration of a PKA inhibitor,
N-[2-(
p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide 2HCl (H-89; 0.36 mg/kg), significantly suppressed the elevation in Hsp70 mRNA (
P < 0.05) and protein synthesis (
P < 0.05) in male Sprague–Dawley rats following a single bout of exercise. In contrast, this post-exercise elevation in Hsp70 mRNA and protein synthesis was not suppressed following the administration of a PKC inhibitor chelerythrine chloride (CHEL; 5 mg/kg) (
P < 0.05). Of note, inhibition of PKA did not alter the nuclear localization and binding affinity of HSF1 to the promotor region of the Hsp70 gene. These data indicate that PKA, and not PKC, plays a necessary role in the early exercise-induced regulation of Hsp70 gene expression, downstream of DNA-binding acquisition. However, the current study does not support previous observations regarding major changes in HSF1 phosphorylation and suggests that other PKA-related mechanisms mediate the activation of Hsp70 gene expression following exercise.</description><identifier>ISSN: 0022-2828</identifier><identifier>EISSN: 1095-8584</identifier><identifier>DOI: 10.1016/j.yjmcc.2004.05.021</identifier><identifier>PMID: 15380675</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Body Temperature ; Cell Nucleus - chemistry ; Cyclic AMP-Dependent Protein Kinases - antagonists & inhibitors ; Cyclic AMP-Dependent Protein Kinases - physiology ; Cytoplasm - chemistry ; DNA-Binding Proteins - analysis ; DNA-Binding Proteins - metabolism ; Electrophoretic Mobility Shift Assay ; Gene Expression Regulation ; Glycogen - analysis ; Glycogen - metabolism ; Heat shock transcription factor 1 ; Heat Shock Transcription Factors ; HSP70 Heat-Shock Proteins - genetics ; HSP70 Heat-Shock Proteins - metabolism ; Intracellular signaling ; Isoquinolines - pharmacology ; Male ; Myocardium - chemistry ; Myocardium - metabolism ; Phosphorylation ; Physical Conditioning, Animal ; Protein kinase A ; Protein kinase C ; Protein Kinase C - antagonists & inhibitors ; Protein Kinase C - physiology ; Protein Kinase Inhibitors - pharmacology ; Rats ; Rats, Sprague-Dawley ; Sulfonamides - pharmacology ; Transcription Factors</subject><ispartof>Journal of molecular and cellular cardiology, 2004-10, Vol.37 (4), p.847-855</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-3c09061e8c33963e5629142c399132810d112e5e57000e38d3e50b33962104b63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022282804001622$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15380675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>James Melling, C.W.</creatorcontrib><creatorcontrib>Thorp, David B.</creatorcontrib><creatorcontrib>Noble, Earl G.</creatorcontrib><title>Regulation of myocardial heat shock protein 70 gene expression following exercise</title><title>Journal of molecular and cellular cardiology</title><addtitle>J Mol Cell Cardiol</addtitle><description>Post-exercise induction of myocardial heat shock protein (Hsp70) gene expression involves the activation of the heat shock transcription factor (HSF1). While the exact mechanisms governing the regulation of HSF1 are unclear, activation is believed to occur subsequent to hyperphosphorylation of specific serine residues. As two important serine kinases, protein kinase A (PKA) and protein kinase C (PKC), have been implicated in many phosphorylative events in myocardial cells, we examined the role of these kinases in the activation of Hsp70 gene expression following exercise. In this report, we show that prior administration of a PKA inhibitor,
N-[2-(
p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide 2HCl (H-89; 0.36 mg/kg), significantly suppressed the elevation in Hsp70 mRNA (
P < 0.05) and protein synthesis (
P < 0.05) in male Sprague–Dawley rats following a single bout of exercise. In contrast, this post-exercise elevation in Hsp70 mRNA and protein synthesis was not suppressed following the administration of a PKC inhibitor chelerythrine chloride (CHEL; 5 mg/kg) (
P < 0.05). Of note, inhibition of PKA did not alter the nuclear localization and binding affinity of HSF1 to the promotor region of the Hsp70 gene. These data indicate that PKA, and not PKC, plays a necessary role in the early exercise-induced regulation of Hsp70 gene expression, downstream of DNA-binding acquisition. However, the current study does not support previous observations regarding major changes in HSF1 phosphorylation and suggests that other PKA-related mechanisms mediate the activation of Hsp70 gene expression following exercise.</description><subject>Animals</subject><subject>Body Temperature</subject><subject>Cell Nucleus - chemistry</subject><subject>Cyclic AMP-Dependent Protein Kinases - antagonists & inhibitors</subject><subject>Cyclic AMP-Dependent Protein Kinases - physiology</subject><subject>Cytoplasm - chemistry</subject><subject>DNA-Binding Proteins - analysis</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>Gene Expression Regulation</subject><subject>Glycogen - analysis</subject><subject>Glycogen - metabolism</subject><subject>Heat shock transcription factor 1</subject><subject>Heat Shock Transcription Factors</subject><subject>HSP70 Heat-Shock Proteins - genetics</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>Intracellular signaling</subject><subject>Isoquinolines - pharmacology</subject><subject>Male</subject><subject>Myocardium - chemistry</subject><subject>Myocardium - metabolism</subject><subject>Phosphorylation</subject><subject>Physical Conditioning, Animal</subject><subject>Protein kinase A</subject><subject>Protein kinase C</subject><subject>Protein Kinase C - antagonists & inhibitors</subject><subject>Protein Kinase C - physiology</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sulfonamides - pharmacology</subject><subject>Transcription Factors</subject><issn>0022-2828</issn><issn>1095-8584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtOwzAQhi0EoqVwAiSUFbuEsR0nzoIFqnhJlZAqWFupM20dkrjYKdDbcBZOhksrsWM10uj75_ERck4hoUCzqzrZ1K3WCQNIExAJMHpAhhQKEUsh00MyBGAsZpLJATnxvgaAIuX8mAyo4BKyXAzJdIqLdVP2xnaRnUftxurSVaZsoiWWfeSXVr9GK2d7NF2Uw_fXAjuM8HPl0PttaG6bxn6YbhGa6LTxeEqO5mXj8WxfR-Tl7vZ5_BBPnu4fxzeTWHMh-phrKCCjKDXnRcZRZKygKdO8KChnkkJFKUOBIg93I5dVQGC2ZRmFdJbxEbnczQ3nva3R96o1XmPTlB3atVdZJoucSxFAvgO1s947nKuVM23pNoqC2qpUtfpVqbYqFQgVVIbUxX78etZi9ZfZuwvA9Q7A8OS7Qae8NthprIxD3avKmn8X_AAzqoVE</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>James Melling, C.W.</creator><creator>Thorp, David B.</creator><creator>Noble, Earl G.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20041001</creationdate><title>Regulation of myocardial heat shock protein 70 gene expression following exercise</title><author>James Melling, C.W. ; Thorp, David B. ; Noble, Earl G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-3c09061e8c33963e5629142c399132810d112e5e57000e38d3e50b33962104b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Body Temperature</topic><topic>Cell Nucleus - chemistry</topic><topic>Cyclic AMP-Dependent Protein Kinases - antagonists & inhibitors</topic><topic>Cyclic AMP-Dependent Protein Kinases - physiology</topic><topic>Cytoplasm - chemistry</topic><topic>DNA-Binding Proteins - analysis</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>Gene Expression Regulation</topic><topic>Glycogen - analysis</topic><topic>Glycogen - metabolism</topic><topic>Heat shock transcription factor 1</topic><topic>Heat Shock Transcription Factors</topic><topic>HSP70 Heat-Shock Proteins - genetics</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>Intracellular signaling</topic><topic>Isoquinolines - pharmacology</topic><topic>Male</topic><topic>Myocardium - chemistry</topic><topic>Myocardium - metabolism</topic><topic>Phosphorylation</topic><topic>Physical Conditioning, Animal</topic><topic>Protein kinase A</topic><topic>Protein kinase C</topic><topic>Protein Kinase C - antagonists & inhibitors</topic><topic>Protein Kinase C - physiology</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sulfonamides - pharmacology</topic><topic>Transcription Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>James Melling, C.W.</creatorcontrib><creatorcontrib>Thorp, David B.</creatorcontrib><creatorcontrib>Noble, Earl G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular and cellular cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>James Melling, C.W.</au><au>Thorp, David B.</au><au>Noble, Earl G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of myocardial heat shock protein 70 gene expression following exercise</atitle><jtitle>Journal of molecular and cellular cardiology</jtitle><addtitle>J Mol Cell Cardiol</addtitle><date>2004-10-01</date><risdate>2004</risdate><volume>37</volume><issue>4</issue><spage>847</spage><epage>855</epage><pages>847-855</pages><issn>0022-2828</issn><eissn>1095-8584</eissn><abstract>Post-exercise induction of myocardial heat shock protein (Hsp70) gene expression involves the activation of the heat shock transcription factor (HSF1). While the exact mechanisms governing the regulation of HSF1 are unclear, activation is believed to occur subsequent to hyperphosphorylation of specific serine residues. As two important serine kinases, protein kinase A (PKA) and protein kinase C (PKC), have been implicated in many phosphorylative events in myocardial cells, we examined the role of these kinases in the activation of Hsp70 gene expression following exercise. In this report, we show that prior administration of a PKA inhibitor,
N-[2-(
p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide 2HCl (H-89; 0.36 mg/kg), significantly suppressed the elevation in Hsp70 mRNA (
P < 0.05) and protein synthesis (
P < 0.05) in male Sprague–Dawley rats following a single bout of exercise. In contrast, this post-exercise elevation in Hsp70 mRNA and protein synthesis was not suppressed following the administration of a PKC inhibitor chelerythrine chloride (CHEL; 5 mg/kg) (
P < 0.05). Of note, inhibition of PKA did not alter the nuclear localization and binding affinity of HSF1 to the promotor region of the Hsp70 gene. These data indicate that PKA, and not PKC, plays a necessary role in the early exercise-induced regulation of Hsp70 gene expression, downstream of DNA-binding acquisition. However, the current study does not support previous observations regarding major changes in HSF1 phosphorylation and suggests that other PKA-related mechanisms mediate the activation of Hsp70 gene expression following exercise.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>15380675</pmid><doi>10.1016/j.yjmcc.2004.05.021</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2828 |
ispartof | Journal of molecular and cellular cardiology, 2004-10, Vol.37 (4), p.847-855 |
issn | 0022-2828 1095-8584 |
language | eng |
recordid | cdi_proquest_miscellaneous_66897385 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Body Temperature Cell Nucleus - chemistry Cyclic AMP-Dependent Protein Kinases - antagonists & inhibitors Cyclic AMP-Dependent Protein Kinases - physiology Cytoplasm - chemistry DNA-Binding Proteins - analysis DNA-Binding Proteins - metabolism Electrophoretic Mobility Shift Assay Gene Expression Regulation Glycogen - analysis Glycogen - metabolism Heat shock transcription factor 1 Heat Shock Transcription Factors HSP70 Heat-Shock Proteins - genetics HSP70 Heat-Shock Proteins - metabolism Intracellular signaling Isoquinolines - pharmacology Male Myocardium - chemistry Myocardium - metabolism Phosphorylation Physical Conditioning, Animal Protein kinase A Protein kinase C Protein Kinase C - antagonists & inhibitors Protein Kinase C - physiology Protein Kinase Inhibitors - pharmacology Rats Rats, Sprague-Dawley Sulfonamides - pharmacology Transcription Factors |
title | Regulation of myocardial heat shock protein 70 gene expression following exercise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20myocardial%20heat%20shock%20protein%2070%C2%A0gene%20expression%20following%20exercise&rft.jtitle=Journal%20of%20molecular%20and%20cellular%20cardiology&rft.au=James%20Melling,%20C.W.&rft.date=2004-10-01&rft.volume=37&rft.issue=4&rft.spage=847&rft.epage=855&rft.pages=847-855&rft.issn=0022-2828&rft.eissn=1095-8584&rft_id=info:doi/10.1016/j.yjmcc.2004.05.021&rft_dat=%3Cproquest_cross%3E66897385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66897385&rft_id=info:pmid/15380675&rft_els_id=S0022282804001622&rfr_iscdi=true |