Role of soft bone, CSF and gray matter in EEG simulations
Effects of soft skull bone, cerebrospinal fluid (CSF) and gray matter on scalp potentials were examined with highly heterogeneous finite element models of an adult male subject. These models were constructed from segmented T1 weighted magnetic resonance images. Models had voxel resolutions of 1x1x3....
Gespeichert in:
Veröffentlicht in: | Brain topography 2004-06, Vol.16 (4), p.245-248 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Effects of soft skull bone, cerebrospinal fluid (CSF) and gray matter on scalp potentials were examined with highly heterogeneous finite element models of an adult male subject. These models were constructed from segmented T1 weighted magnetic resonance images. Models had voxel resolutions of 1x1x3.2 mm with a total of about 1.5 million voxels. The scalp potentials, due to a dipolar source in the motor cortex area, were computed with an adaptive finite element solver. It was found that the scalp potentials were significantly affected by the soft bone, CSF and gray matter tissue boundaries in the models. |
---|---|
ISSN: | 0896-0267 1573-6792 |
DOI: | 10.1023/b:brat.0000032859.68959.76 |