13C-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea

Summary Marine pelagic redoxclines are zones of high dark CO2 fixation rates, which can correspond up to 30% of the surface primary production. However, despite this significant contribution to the pelagic carbon cycle, the identity of most chemolithoautotrophic organisms is still unknown. Therefore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2009-02, Vol.11 (2), p.326-337
Hauptverfasser: Glaubitz, Sabine, Lueders, Tillmann, Abraham, Wolf-Rainer, Jost, Günter, Jürgens, Klaus, Labrenz, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 337
container_issue 2
container_start_page 326
container_title Environmental microbiology
container_volume 11
creator Glaubitz, Sabine
Lueders, Tillmann
Abraham, Wolf-Rainer
Jost, Günter
Jürgens, Klaus
Labrenz, Matthias
description Summary Marine pelagic redoxclines are zones of high dark CO2 fixation rates, which can correspond up to 30% of the surface primary production. However, despite this significant contribution to the pelagic carbon cycle, the identity of most chemolithoautotrophic organisms is still unknown. Therefore, the aim of this study was to directly link the dark CO2 fixation capacity of a pelagic redoxcline in the central Baltic Sea (Landsort Deep) with the identity of the main chemolithoautotrophs involved. Our approach was based on the analysis of natural carbon isotope signatures in fatty acid methyl esters (FAMEs) and on measurements of CO2 incorporation in 13C‐bicarbonate pulse experiments. The incorporation of 13C into chemolithoautotrophic cells was investigated by rRNA‐based stable isotope probing (RNA‐SIP) and FAME analysis after incubation for 24 and 72 h under in situ conditions. Our results demonstrated that fatty acids indicative of Proteobacteria were significantly enriched in 13C slightly below the chemocline. RNA‐SIP analyses revealed that two different Gammaproteobacteria and three closely related Epsilonproteobacteria of the Sulfurimonas cluster were active dark CO2‐fixing microorganisms, with a time‐dependent community shift between these groups. Labelling of Archaea was not detectable, but after 72 h of incubation the 13C‐label had been transferred to a potentially bacterivorous ciliate related to Euplotes sp. Thus, RNA‐SIP provided direct evidence for the contribution of chemolithoautotrophic production to the microbial food web in this marine pelagic redoxcline, emphasizing the importance of dark CO2‐fixing Proteobacteria within this habitat.
doi_str_mv 10.1111/j.1462-2920.2008.01770.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_66894650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20337709</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1770-361e688df65138a238867856600707050912c25efdbac1749342487a9f0f05a53</originalsourceid><addsrcrecordid>eNqFkc9y0zAQxj0MDC2FV2B04majP7EsHzhAJg2dSeDQAkfNxl4TBdkyktImz8OLIpMSjkgH7Wh_32q1X5YRRguW1ttdwWaS57zmtOCUqoKyqqLF4Ul2eU48PceMX2QvQtjRRImKPs8umKpqIZi8zH4xMc9NcNGNSGAAewwYiMd7BEviFiJpttg7a-LWwT666N24NQ1ZQt9DnhQtWYzBWDeM3kV0G2giegOkQ2wJkN403m1MKtY515IH3BAzpPsRLXxPdTy27tBYMyBxXXoQSYND9In_ADYm4BbhZfasAxvw1eN5lX25XtzNP-arz8ub-ftVbqbf50IylEq1nSyZUMCFUrJSpZSUVmmXNA2i4SV2bWqSVbNazPhMVVB3tKMllOIqe3Oqm77yc48h6t6EBq2FAd0-aClVPZMl_S_IqRCpozqBrx_B_abHVo_e9OCP-u_8E_DuBDwYi8d_eaonn_VOTxbqyU49-az_-KwPerG-maKkz096EyIeznrwP7RMXpf626elXt19va3WfK2vxW9-o6sx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20337709</pqid></control><display><type>article</type><title>13C-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Glaubitz, Sabine ; Lueders, Tillmann ; Abraham, Wolf-Rainer ; Jost, Günter ; Jürgens, Klaus ; Labrenz, Matthias</creator><creatorcontrib>Glaubitz, Sabine ; Lueders, Tillmann ; Abraham, Wolf-Rainer ; Jost, Günter ; Jürgens, Klaus ; Labrenz, Matthias</creatorcontrib><description>Summary Marine pelagic redoxclines are zones of high dark CO2 fixation rates, which can correspond up to 30% of the surface primary production. However, despite this significant contribution to the pelagic carbon cycle, the identity of most chemolithoautotrophic organisms is still unknown. Therefore, the aim of this study was to directly link the dark CO2 fixation capacity of a pelagic redoxcline in the central Baltic Sea (Landsort Deep) with the identity of the main chemolithoautotrophs involved. Our approach was based on the analysis of natural carbon isotope signatures in fatty acid methyl esters (FAMEs) and on measurements of CO2 incorporation in 13C‐bicarbonate pulse experiments. The incorporation of 13C into chemolithoautotrophic cells was investigated by rRNA‐based stable isotope probing (RNA‐SIP) and FAME analysis after incubation for 24 and 72 h under in situ conditions. Our results demonstrated that fatty acids indicative of Proteobacteria were significantly enriched in 13C slightly below the chemocline. RNA‐SIP analyses revealed that two different Gammaproteobacteria and three closely related Epsilonproteobacteria of the Sulfurimonas cluster were active dark CO2‐fixing microorganisms, with a time‐dependent community shift between these groups. Labelling of Archaea was not detectable, but after 72 h of incubation the 13C‐label had been transferred to a potentially bacterivorous ciliate related to Euplotes sp. Thus, RNA‐SIP provided direct evidence for the contribution of chemolithoautotrophic production to the microbial food web in this marine pelagic redoxcline, emphasizing the importance of dark CO2‐fixing Proteobacteria within this habitat.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/j.1462-2920.2008.01770.x</identifier><identifier>PMID: 18793316</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Archaea ; Archaea - classification ; Archaea - genetics ; Archaea - metabolism ; Biodiversity ; Carbon Dioxide - metabolism ; Carbon Isotopes - metabolism ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA, Ribosomal - chemistry ; DNA, Ribosomal - genetics ; Epsilonproteobacteria - classification ; Epsilonproteobacteria - genetics ; Epsilonproteobacteria - metabolism ; Euplotes ; Euplotes - classification ; Euplotes - genetics ; Euplotes - metabolism ; Fatty Acids - chemistry ; Food Chain ; Gammaproteobacteria - classification ; Gammaproteobacteria - genetics ; Gammaproteobacteria - metabolism ; Molecular Sequence Data ; Proteobacteria ; RNA - chemistry ; RNA, Ribosomal, 16S - genetics ; Seawater - microbiology ; Sequence Analysis, DNA ; Staining and Labeling</subject><ispartof>Environmental microbiology, 2009-02, Vol.11 (2), p.326-337</ispartof><rights>2008 The Authors. Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1462-2920.2008.01770.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1462-2920.2008.01770.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18793316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Glaubitz, Sabine</creatorcontrib><creatorcontrib>Lueders, Tillmann</creatorcontrib><creatorcontrib>Abraham, Wolf-Rainer</creatorcontrib><creatorcontrib>Jost, Günter</creatorcontrib><creatorcontrib>Jürgens, Klaus</creatorcontrib><creatorcontrib>Labrenz, Matthias</creatorcontrib><title>13C-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary Marine pelagic redoxclines are zones of high dark CO2 fixation rates, which can correspond up to 30% of the surface primary production. However, despite this significant contribution to the pelagic carbon cycle, the identity of most chemolithoautotrophic organisms is still unknown. Therefore, the aim of this study was to directly link the dark CO2 fixation capacity of a pelagic redoxcline in the central Baltic Sea (Landsort Deep) with the identity of the main chemolithoautotrophs involved. Our approach was based on the analysis of natural carbon isotope signatures in fatty acid methyl esters (FAMEs) and on measurements of CO2 incorporation in 13C‐bicarbonate pulse experiments. The incorporation of 13C into chemolithoautotrophic cells was investigated by rRNA‐based stable isotope probing (RNA‐SIP) and FAME analysis after incubation for 24 and 72 h under in situ conditions. Our results demonstrated that fatty acids indicative of Proteobacteria were significantly enriched in 13C slightly below the chemocline. RNA‐SIP analyses revealed that two different Gammaproteobacteria and three closely related Epsilonproteobacteria of the Sulfurimonas cluster were active dark CO2‐fixing microorganisms, with a time‐dependent community shift between these groups. Labelling of Archaea was not detectable, but after 72 h of incubation the 13C‐label had been transferred to a potentially bacterivorous ciliate related to Euplotes sp. Thus, RNA‐SIP provided direct evidence for the contribution of chemolithoautotrophic production to the microbial food web in this marine pelagic redoxcline, emphasizing the importance of dark CO2‐fixing Proteobacteria within this habitat.</description><subject>Animals</subject><subject>Archaea</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Archaea - metabolism</subject><subject>Biodiversity</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbon Isotopes - metabolism</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Ribosomal - chemistry</subject><subject>DNA, Ribosomal - genetics</subject><subject>Epsilonproteobacteria - classification</subject><subject>Epsilonproteobacteria - genetics</subject><subject>Epsilonproteobacteria - metabolism</subject><subject>Euplotes</subject><subject>Euplotes - classification</subject><subject>Euplotes - genetics</subject><subject>Euplotes - metabolism</subject><subject>Fatty Acids - chemistry</subject><subject>Food Chain</subject><subject>Gammaproteobacteria - classification</subject><subject>Gammaproteobacteria - genetics</subject><subject>Gammaproteobacteria - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Proteobacteria</subject><subject>RNA - chemistry</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Seawater - microbiology</subject><subject>Sequence Analysis, DNA</subject><subject>Staining and Labeling</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9y0zAQxj0MDC2FV2B04majP7EsHzhAJg2dSeDQAkfNxl4TBdkyktImz8OLIpMSjkgH7Wh_32q1X5YRRguW1ttdwWaS57zmtOCUqoKyqqLF4Ul2eU48PceMX2QvQtjRRImKPs8umKpqIZi8zH4xMc9NcNGNSGAAewwYiMd7BEviFiJpttg7a-LWwT666N24NQ1ZQt9DnhQtWYzBWDeM3kV0G2giegOkQ2wJkN403m1MKtY515IH3BAzpPsRLXxPdTy27tBYMyBxXXoQSYND9In_ADYm4BbhZfasAxvw1eN5lX25XtzNP-arz8ub-ftVbqbf50IylEq1nSyZUMCFUrJSpZSUVmmXNA2i4SV2bWqSVbNazPhMVVB3tKMllOIqe3Oqm77yc48h6t6EBq2FAd0-aClVPZMl_S_IqRCpozqBrx_B_abHVo_e9OCP-u_8E_DuBDwYi8d_eaonn_VOTxbqyU49-az_-KwPerG-maKkz096EyIeznrwP7RMXpf626elXt19va3WfK2vxW9-o6sx</recordid><startdate>200902</startdate><enddate>200902</enddate><creator>Glaubitz, Sabine</creator><creator>Lueders, Tillmann</creator><creator>Abraham, Wolf-Rainer</creator><creator>Jost, Günter</creator><creator>Jürgens, Klaus</creator><creator>Labrenz, Matthias</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200902</creationdate><title>13C-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea</title><author>Glaubitz, Sabine ; Lueders, Tillmann ; Abraham, Wolf-Rainer ; Jost, Günter ; Jürgens, Klaus ; Labrenz, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1770-361e688df65138a238867856600707050912c25efdbac1749342487a9f0f05a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Archaea</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Archaea - metabolism</topic><topic>Biodiversity</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbon Isotopes - metabolism</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Ribosomal - chemistry</topic><topic>DNA, Ribosomal - genetics</topic><topic>Epsilonproteobacteria - classification</topic><topic>Epsilonproteobacteria - genetics</topic><topic>Epsilonproteobacteria - metabolism</topic><topic>Euplotes</topic><topic>Euplotes - classification</topic><topic>Euplotes - genetics</topic><topic>Euplotes - metabolism</topic><topic>Fatty Acids - chemistry</topic><topic>Food Chain</topic><topic>Gammaproteobacteria - classification</topic><topic>Gammaproteobacteria - genetics</topic><topic>Gammaproteobacteria - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Proteobacteria</topic><topic>RNA - chemistry</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Seawater - microbiology</topic><topic>Sequence Analysis, DNA</topic><topic>Staining and Labeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glaubitz, Sabine</creatorcontrib><creatorcontrib>Lueders, Tillmann</creatorcontrib><creatorcontrib>Abraham, Wolf-Rainer</creatorcontrib><creatorcontrib>Jost, Günter</creatorcontrib><creatorcontrib>Jürgens, Klaus</creatorcontrib><creatorcontrib>Labrenz, Matthias</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glaubitz, Sabine</au><au>Lueders, Tillmann</au><au>Abraham, Wolf-Rainer</au><au>Jost, Günter</au><au>Jürgens, Klaus</au><au>Labrenz, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>13C-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2009-02</date><risdate>2009</risdate><volume>11</volume><issue>2</issue><spage>326</spage><epage>337</epage><pages>326-337</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary Marine pelagic redoxclines are zones of high dark CO2 fixation rates, which can correspond up to 30% of the surface primary production. However, despite this significant contribution to the pelagic carbon cycle, the identity of most chemolithoautotrophic organisms is still unknown. Therefore, the aim of this study was to directly link the dark CO2 fixation capacity of a pelagic redoxcline in the central Baltic Sea (Landsort Deep) with the identity of the main chemolithoautotrophs involved. Our approach was based on the analysis of natural carbon isotope signatures in fatty acid methyl esters (FAMEs) and on measurements of CO2 incorporation in 13C‐bicarbonate pulse experiments. The incorporation of 13C into chemolithoautotrophic cells was investigated by rRNA‐based stable isotope probing (RNA‐SIP) and FAME analysis after incubation for 24 and 72 h under in situ conditions. Our results demonstrated that fatty acids indicative of Proteobacteria were significantly enriched in 13C slightly below the chemocline. RNA‐SIP analyses revealed that two different Gammaproteobacteria and three closely related Epsilonproteobacteria of the Sulfurimonas cluster were active dark CO2‐fixing microorganisms, with a time‐dependent community shift between these groups. Labelling of Archaea was not detectable, but after 72 h of incubation the 13C‐label had been transferred to a potentially bacterivorous ciliate related to Euplotes sp. Thus, RNA‐SIP provided direct evidence for the contribution of chemolithoautotrophic production to the microbial food web in this marine pelagic redoxcline, emphasizing the importance of dark CO2‐fixing Proteobacteria within this habitat.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>18793316</pmid><doi>10.1111/j.1462-2920.2008.01770.x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2009-02, Vol.11 (2), p.326-337
issn 1462-2912
1462-2920
language eng
recordid cdi_proquest_miscellaneous_66894650
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Archaea
Archaea - classification
Archaea - genetics
Archaea - metabolism
Biodiversity
Carbon Dioxide - metabolism
Carbon Isotopes - metabolism
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
DNA, Ribosomal - chemistry
DNA, Ribosomal - genetics
Epsilonproteobacteria - classification
Epsilonproteobacteria - genetics
Epsilonproteobacteria - metabolism
Euplotes
Euplotes - classification
Euplotes - genetics
Euplotes - metabolism
Fatty Acids - chemistry
Food Chain
Gammaproteobacteria - classification
Gammaproteobacteria - genetics
Gammaproteobacteria - metabolism
Molecular Sequence Data
Proteobacteria
RNA - chemistry
RNA, Ribosomal, 16S - genetics
Seawater - microbiology
Sequence Analysis, DNA
Staining and Labeling
title 13C-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=13C-isotope%20analyses%20reveal%20that%20chemolithoautotrophic%20Gamma-%20and%20Epsilonproteobacteria%20feed%20a%20microbial%20food%20web%20in%20a%20pelagic%20redoxcline%20of%20the%20central%20Baltic%20Sea&rft.jtitle=Environmental%20microbiology&rft.au=Glaubitz,%20Sabine&rft.date=2009-02&rft.volume=11&rft.issue=2&rft.spage=326&rft.epage=337&rft.pages=326-337&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/j.1462-2920.2008.01770.x&rft_dat=%3Cproquest_pubme%3E20337709%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20337709&rft_id=info:pmid/18793316&rfr_iscdi=true