Gene expression profiling of gliomas strongly predicts survival
In current clinical practice, histology-based grading of diffuse infiltrative gliomas is the best predictor of patient survival time. Yet histology provides little insight into the underlying biology of gliomas and is limited in its ability to identify and guide new molecularly targeted therapies. W...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2004-09, Vol.64 (18), p.6503-6510 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6510 |
---|---|
container_issue | 18 |
container_start_page | 6503 |
container_title | Cancer research (Chicago, Ill.) |
container_volume | 64 |
creator | FREIJE, William A CASTRO-VARGAS, F. Edmundo ZIXING FANG HORVATH, Steve CLOUGHESY, Timothy LIAN, Linda M MISCHEL, Paul S NELSON, Stanley F |
description | In current clinical practice, histology-based grading of diffuse infiltrative gliomas is the best predictor of patient survival time. Yet histology provides little insight into the underlying biology of gliomas and is limited in its ability to identify and guide new molecularly targeted therapies. We have performed large-scale gene expression analysis using the Affymetrix HG U133 oligonucleotide arrays on 85 diffuse infiltrating gliomas of all histologic types to assess whether a gene expression-based, histology-independent classifier is predictive of survival and to determine whether gene expression signatures provide insight into the biology of gliomas. We found that gene expression-based grouping of tumors is a more powerful survival predictor than histologic grade or age. The poor prognosis samples could be grouped into three different poor prognosis groups, each with distinct molecular signatures. We further describe a list of 44 genes whose expression patterns reliably classify gliomas into previously unrecognized biological and prognostic groups: these genes are outstanding candidates for use in histology-independent classification of high-grade gliomas. The ability of the large scale and 44 gene set expression signatures to group tumors into strong survival groups was validated with an additional external and independent data set from another institution composed of 50 additional gliomas. This demonstrates that large-scale gene expression analysis and subset analysis of gliomas reveals unrecognized heterogeneity of tumors and is efficient at selecting prognosis-related gene expression differences which are able to be applied across institutions. |
doi_str_mv | 10.1158/0008-5472.can-04-0452 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66885278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66885278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c617t-6e99a71a0e395c85642ef75a7bea14d9dc82c1fd5193c7610b023ed2dd0578843</originalsourceid><addsrcrecordid>eNqFkE1LwzAYgIMobk5_gtKL3jqTNmnSk4yhUxh60XPIkrcjkrYzaYf796as6FEIhLx53q8HoWuC54QwcY8xFimjPJtr1aSYxsOyEzQlLBcpp5SdoukvM0EXIXzGJyOYnaNJhDgtCzJFDytoIIHvnYcQbNskO99W1tlmm7RVsnW2rVVIQufbZusO8ReM1V2M9H5v98pdorNKuQBX4z1DH0-P78vndP22elku1qkuCO_SAspScaIw5CXTghU0g4ozxTegCDWl0SLTpDKMlLnmBcEbnOVgMmMw40LQfIbujnXjfF89hE7WNmhwTjXQ9kEWhRAs4-JfkHBeckFxBNkR1L4NwUMld97Wyh8kwXJQLAd9ctAnl4tXiakcFMe8m7FBv6nB_GWNTiNwOwIqaOUqrxptwx8Xt8tIjvMfWhyEVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17797840</pqid></control><display><type>article</type><title>Gene expression profiling of gliomas strongly predicts survival</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>FREIJE, William A ; CASTRO-VARGAS, F. Edmundo ; ZIXING FANG ; HORVATH, Steve ; CLOUGHESY, Timothy ; LIAN, Linda M ; MISCHEL, Paul S ; NELSON, Stanley F</creator><creatorcontrib>FREIJE, William A ; CASTRO-VARGAS, F. Edmundo ; ZIXING FANG ; HORVATH, Steve ; CLOUGHESY, Timothy ; LIAN, Linda M ; MISCHEL, Paul S ; NELSON, Stanley F</creatorcontrib><description>In current clinical practice, histology-based grading of diffuse infiltrative gliomas is the best predictor of patient survival time. Yet histology provides little insight into the underlying biology of gliomas and is limited in its ability to identify and guide new molecularly targeted therapies. We have performed large-scale gene expression analysis using the Affymetrix HG U133 oligonucleotide arrays on 85 diffuse infiltrating gliomas of all histologic types to assess whether a gene expression-based, histology-independent classifier is predictive of survival and to determine whether gene expression signatures provide insight into the biology of gliomas. We found that gene expression-based grouping of tumors is a more powerful survival predictor than histologic grade or age. The poor prognosis samples could be grouped into three different poor prognosis groups, each with distinct molecular signatures. We further describe a list of 44 genes whose expression patterns reliably classify gliomas into previously unrecognized biological and prognostic groups: these genes are outstanding candidates for use in histology-independent classification of high-grade gliomas. The ability of the large scale and 44 gene set expression signatures to group tumors into strong survival groups was validated with an additional external and independent data set from another institution composed of 50 additional gliomas. This demonstrates that large-scale gene expression analysis and subset analysis of gliomas reveals unrecognized heterogeneity of tumors and is efficient at selecting prognosis-related gene expression differences which are able to be applied across institutions.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.can-04-0452</identifier><identifier>PMID: 15374961</identifier><identifier>CODEN: CNREA8</identifier><language>eng</language><publisher>Philadelphia, PA: American Association for Cancer Research</publisher><subject>Adolescent ; Adult ; Aged ; Antineoplastic agents ; Biological and medical sciences ; Brain Neoplasms - genetics ; Cluster Analysis ; Female ; Gene Expression Profiling ; Glioma - genetics ; Glioma - pathology ; Humans ; Male ; Medical sciences ; Middle Aged ; Oligonucleotide Array Sequence Analysis ; Pharmacology. Drug treatments ; Predictive Value of Tests ; Prognosis ; Reverse Transcriptase Polymerase Chain Reaction ; Survival Rate ; Tumors</subject><ispartof>Cancer research (Chicago, Ill.), 2004-09, Vol.64 (18), p.6503-6510</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c617t-6e99a71a0e395c85642ef75a7bea14d9dc82c1fd5193c7610b023ed2dd0578843</citedby><cites>FETCH-LOGICAL-c617t-6e99a71a0e395c85642ef75a7bea14d9dc82c1fd5193c7610b023ed2dd0578843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3343,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16102130$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15374961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>FREIJE, William A</creatorcontrib><creatorcontrib>CASTRO-VARGAS, F. Edmundo</creatorcontrib><creatorcontrib>ZIXING FANG</creatorcontrib><creatorcontrib>HORVATH, Steve</creatorcontrib><creatorcontrib>CLOUGHESY, Timothy</creatorcontrib><creatorcontrib>LIAN, Linda M</creatorcontrib><creatorcontrib>MISCHEL, Paul S</creatorcontrib><creatorcontrib>NELSON, Stanley F</creatorcontrib><title>Gene expression profiling of gliomas strongly predicts survival</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>In current clinical practice, histology-based grading of diffuse infiltrative gliomas is the best predictor of patient survival time. Yet histology provides little insight into the underlying biology of gliomas and is limited in its ability to identify and guide new molecularly targeted therapies. We have performed large-scale gene expression analysis using the Affymetrix HG U133 oligonucleotide arrays on 85 diffuse infiltrating gliomas of all histologic types to assess whether a gene expression-based, histology-independent classifier is predictive of survival and to determine whether gene expression signatures provide insight into the biology of gliomas. We found that gene expression-based grouping of tumors is a more powerful survival predictor than histologic grade or age. The poor prognosis samples could be grouped into three different poor prognosis groups, each with distinct molecular signatures. We further describe a list of 44 genes whose expression patterns reliably classify gliomas into previously unrecognized biological and prognostic groups: these genes are outstanding candidates for use in histology-independent classification of high-grade gliomas. The ability of the large scale and 44 gene set expression signatures to group tumors into strong survival groups was validated with an additional external and independent data set from another institution composed of 50 additional gliomas. This demonstrates that large-scale gene expression analysis and subset analysis of gliomas reveals unrecognized heterogeneity of tumors and is efficient at selecting prognosis-related gene expression differences which are able to be applied across institutions.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Antineoplastic agents</subject><subject>Biological and medical sciences</subject><subject>Brain Neoplasms - genetics</subject><subject>Cluster Analysis</subject><subject>Female</subject><subject>Gene Expression Profiling</subject><subject>Glioma - genetics</subject><subject>Glioma - pathology</subject><subject>Humans</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Pharmacology. Drug treatments</subject><subject>Predictive Value of Tests</subject><subject>Prognosis</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Survival Rate</subject><subject>Tumors</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LwzAYgIMobk5_gtKL3jqTNmnSk4yhUxh60XPIkrcjkrYzaYf796as6FEIhLx53q8HoWuC54QwcY8xFimjPJtr1aSYxsOyEzQlLBcpp5SdoukvM0EXIXzGJyOYnaNJhDgtCzJFDytoIIHvnYcQbNskO99W1tlmm7RVsnW2rVVIQufbZusO8ReM1V2M9H5v98pdorNKuQBX4z1DH0-P78vndP22elku1qkuCO_SAspScaIw5CXTghU0g4ozxTegCDWl0SLTpDKMlLnmBcEbnOVgMmMw40LQfIbujnXjfF89hE7WNmhwTjXQ9kEWhRAs4-JfkHBeckFxBNkR1L4NwUMld97Wyh8kwXJQLAd9ctAnl4tXiakcFMe8m7FBv6nB_GWNTiNwOwIqaOUqrxptwx8Xt8tIjvMfWhyEVA</recordid><startdate>20040915</startdate><enddate>20040915</enddate><creator>FREIJE, William A</creator><creator>CASTRO-VARGAS, F. Edmundo</creator><creator>ZIXING FANG</creator><creator>HORVATH, Steve</creator><creator>CLOUGHESY, Timothy</creator><creator>LIAN, Linda M</creator><creator>MISCHEL, Paul S</creator><creator>NELSON, Stanley F</creator><general>American Association for Cancer Research</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20040915</creationdate><title>Gene expression profiling of gliomas strongly predicts survival</title><author>FREIJE, William A ; CASTRO-VARGAS, F. Edmundo ; ZIXING FANG ; HORVATH, Steve ; CLOUGHESY, Timothy ; LIAN, Linda M ; MISCHEL, Paul S ; NELSON, Stanley F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c617t-6e99a71a0e395c85642ef75a7bea14d9dc82c1fd5193c7610b023ed2dd0578843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Antineoplastic agents</topic><topic>Biological and medical sciences</topic><topic>Brain Neoplasms - genetics</topic><topic>Cluster Analysis</topic><topic>Female</topic><topic>Gene Expression Profiling</topic><topic>Glioma - genetics</topic><topic>Glioma - pathology</topic><topic>Humans</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Pharmacology. Drug treatments</topic><topic>Predictive Value of Tests</topic><topic>Prognosis</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Survival Rate</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FREIJE, William A</creatorcontrib><creatorcontrib>CASTRO-VARGAS, F. Edmundo</creatorcontrib><creatorcontrib>ZIXING FANG</creatorcontrib><creatorcontrib>HORVATH, Steve</creatorcontrib><creatorcontrib>CLOUGHESY, Timothy</creatorcontrib><creatorcontrib>LIAN, Linda M</creatorcontrib><creatorcontrib>MISCHEL, Paul S</creatorcontrib><creatorcontrib>NELSON, Stanley F</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FREIJE, William A</au><au>CASTRO-VARGAS, F. Edmundo</au><au>ZIXING FANG</au><au>HORVATH, Steve</au><au>CLOUGHESY, Timothy</au><au>LIAN, Linda M</au><au>MISCHEL, Paul S</au><au>NELSON, Stanley F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene expression profiling of gliomas strongly predicts survival</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2004-09-15</date><risdate>2004</risdate><volume>64</volume><issue>18</issue><spage>6503</spage><epage>6510</epage><pages>6503-6510</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><coden>CNREA8</coden><abstract>In current clinical practice, histology-based grading of diffuse infiltrative gliomas is the best predictor of patient survival time. Yet histology provides little insight into the underlying biology of gliomas and is limited in its ability to identify and guide new molecularly targeted therapies. We have performed large-scale gene expression analysis using the Affymetrix HG U133 oligonucleotide arrays on 85 diffuse infiltrating gliomas of all histologic types to assess whether a gene expression-based, histology-independent classifier is predictive of survival and to determine whether gene expression signatures provide insight into the biology of gliomas. We found that gene expression-based grouping of tumors is a more powerful survival predictor than histologic grade or age. The poor prognosis samples could be grouped into three different poor prognosis groups, each with distinct molecular signatures. We further describe a list of 44 genes whose expression patterns reliably classify gliomas into previously unrecognized biological and prognostic groups: these genes are outstanding candidates for use in histology-independent classification of high-grade gliomas. The ability of the large scale and 44 gene set expression signatures to group tumors into strong survival groups was validated with an additional external and independent data set from another institution composed of 50 additional gliomas. This demonstrates that large-scale gene expression analysis and subset analysis of gliomas reveals unrecognized heterogeneity of tumors and is efficient at selecting prognosis-related gene expression differences which are able to be applied across institutions.</abstract><cop>Philadelphia, PA</cop><pub>American Association for Cancer Research</pub><pmid>15374961</pmid><doi>10.1158/0008-5472.can-04-0452</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-5472 |
ispartof | Cancer research (Chicago, Ill.), 2004-09, Vol.64 (18), p.6503-6510 |
issn | 0008-5472 1538-7445 |
language | eng |
recordid | cdi_proquest_miscellaneous_66885278 |
source | MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adolescent Adult Aged Antineoplastic agents Biological and medical sciences Brain Neoplasms - genetics Cluster Analysis Female Gene Expression Profiling Glioma - genetics Glioma - pathology Humans Male Medical sciences Middle Aged Oligonucleotide Array Sequence Analysis Pharmacology. Drug treatments Predictive Value of Tests Prognosis Reverse Transcriptase Polymerase Chain Reaction Survival Rate Tumors |
title | Gene expression profiling of gliomas strongly predicts survival |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20expression%20profiling%20of%20gliomas%20strongly%20predicts%20survival&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=FREIJE,%20William%20A&rft.date=2004-09-15&rft.volume=64&rft.issue=18&rft.spage=6503&rft.epage=6510&rft.pages=6503-6510&rft.issn=0008-5472&rft.eissn=1538-7445&rft.coden=CNREA8&rft_id=info:doi/10.1158/0008-5472.can-04-0452&rft_dat=%3Cproquest_cross%3E66885278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17797840&rft_id=info:pmid/15374961&rfr_iscdi=true |