Crystal Structure of the Parasporin-2 Bacillus thuringiensis Toxin That Recognizes Cancer Cells

Parasporin-2 is a protein toxin that is isolated from parasporal inclusions of the Gram-positive bacterium Bacillus thuringiensis. Although B. thuringiensis is generally known as a valuable source of insecticidal toxins, parasporin-2 is not insecticidal, but has a strong cytocidal activity in liver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2009-02, Vol.386 (1), p.121-133
Hauptverfasser: Akiba, Toshihiko, Abe, Yuichi, Kitada, Sakae, Kusaka, Yoshitomo, Ito, Akio, Ichimatsu, Tokio, Katayama, Hideki, Akao, Tetsuyuki, Higuchi, Kazuhiko, Mizuki, Eiichi, Ohba, Michio, Kanai, Ryuta, Harata, Kazuaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 1
container_start_page 121
container_title Journal of molecular biology
container_volume 386
creator Akiba, Toshihiko
Abe, Yuichi
Kitada, Sakae
Kusaka, Yoshitomo
Ito, Akio
Ichimatsu, Tokio
Katayama, Hideki
Akao, Tetsuyuki
Higuchi, Kazuhiko
Mizuki, Eiichi
Ohba, Michio
Kanai, Ryuta
Harata, Kazuaki
description Parasporin-2 is a protein toxin that is isolated from parasporal inclusions of the Gram-positive bacterium Bacillus thuringiensis. Although B. thuringiensis is generally known as a valuable source of insecticidal toxins, parasporin-2 is not insecticidal, but has a strong cytocidal activity in liver and colon cancer cells. The 37-kDa inactive nascent protein is proteolytically cleaved to the 30-kDa active form that loses both the N-terminal and the C-terminal segments. Accumulated cytological and biochemical observations on parasporin-2 imply that the protein is a pore-forming toxin. To confirm the hypothesis, we have determined the crystal structure of its active form at a resolution of 2.38 Å. The protein is unusually elongated and mainly comprises long β-strands aligned with its long axis. It is similar to aerolysin-type β-pore-forming toxins, which strongly reinforce the pore-forming hypothesis. The molecule can be divided into three domains. Domain 1, comprising a small β-sheet sandwiched by short α-helices, is probably the target-binding module. Two other domains are both β-sandwiches and thought to be involved in oligomerization and pore formation. Domain 2 has a putative channel-forming β-hairpin characteristic of aerolysin-type toxins. The surface of the protein has an extensive track of exposed side chains of serine and threonine residues. The track might orient the molecule on the cell membrane when domain 1 binds to the target until oligomerization and pore formation are initiated. The β-hairpin has such a tight structure that it seems unlikely to reform as postulated in a recent model of pore formation developed for aerolysin-type toxins. A safety lock model is proposed as an inactivation mechanism by the N-terminal inhibitory segment.
doi_str_mv 10.1016/j.jmb.2008.12.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66874724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283608014903</els_id><sourcerecordid>66874724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-8b1a8de322229e6a936760c615d6170e2bd10def66966e5fbf684d5bf09999b63</originalsourceid><addsrcrecordid>eNqFkMFq3DAQhkVJ6W7SPkAvQafc7IwkW5bIKTFpEgi0tNuzkOVxVovX3kh2yPbpq7ALubVzGZj55mf4CPnKIGfA5OUm32ybnAOonPEcgH8gSwZKZ0oKdUKWacIzroRckNMYNwBQikJ9IgumQRdaiyUxddjHyfb01xRmN80B6djRaY30hw027sbgh4zTG-t8388xbeY0efI4RB_panz1A12t7UR_ohufBv8HI63t4DDQGvs-fiYfO9tH_HLsZ-T3t9tVfZ89fr97qK8fMycUnzLVMKtaFDyVRmm1kJUEJ1nZSlYB8qZl0GInpZYSy67ppCrasulAp2qkOCMXh9xdGJ9njJPZ-ujSB3bAcY5GSlUVFS_-C3JIwspSJJAdQBfGGAN2Zhf81oa9YWDe9JuNSfrNm37DuEmy0835MXxutti-Xxx9J-DqAGBy8eIxmOiSS4etD-gm047-H_F_Ach0lX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20283553</pqid></control><display><type>article</type><title>Crystal Structure of the Parasporin-2 Bacillus thuringiensis Toxin That Recognizes Cancer Cells</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Akiba, Toshihiko ; Abe, Yuichi ; Kitada, Sakae ; Kusaka, Yoshitomo ; Ito, Akio ; Ichimatsu, Tokio ; Katayama, Hideki ; Akao, Tetsuyuki ; Higuchi, Kazuhiko ; Mizuki, Eiichi ; Ohba, Michio ; Kanai, Ryuta ; Harata, Kazuaki</creator><creatorcontrib>Akiba, Toshihiko ; Abe, Yuichi ; Kitada, Sakae ; Kusaka, Yoshitomo ; Ito, Akio ; Ichimatsu, Tokio ; Katayama, Hideki ; Akao, Tetsuyuki ; Higuchi, Kazuhiko ; Mizuki, Eiichi ; Ohba, Michio ; Kanai, Ryuta ; Harata, Kazuaki</creatorcontrib><description>Parasporin-2 is a protein toxin that is isolated from parasporal inclusions of the Gram-positive bacterium Bacillus thuringiensis. Although B. thuringiensis is generally known as a valuable source of insecticidal toxins, parasporin-2 is not insecticidal, but has a strong cytocidal activity in liver and colon cancer cells. The 37-kDa inactive nascent protein is proteolytically cleaved to the 30-kDa active form that loses both the N-terminal and the C-terminal segments. Accumulated cytological and biochemical observations on parasporin-2 imply that the protein is a pore-forming toxin. To confirm the hypothesis, we have determined the crystal structure of its active form at a resolution of 2.38 Å. The protein is unusually elongated and mainly comprises long β-strands aligned with its long axis. It is similar to aerolysin-type β-pore-forming toxins, which strongly reinforce the pore-forming hypothesis. The molecule can be divided into three domains. Domain 1, comprising a small β-sheet sandwiched by short α-helices, is probably the target-binding module. Two other domains are both β-sandwiches and thought to be involved in oligomerization and pore formation. Domain 2 has a putative channel-forming β-hairpin characteristic of aerolysin-type toxins. The surface of the protein has an extensive track of exposed side chains of serine and threonine residues. The track might orient the molecule on the cell membrane when domain 1 binds to the target until oligomerization and pore formation are initiated. The β-hairpin has such a tight structure that it seems unlikely to reform as postulated in a recent model of pore formation developed for aerolysin-type toxins. A safety lock model is proposed as an inactivation mechanism by the N-terminal inhibitory segment.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2008.12.002</identifier><identifier>PMID: 19094993</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; Bacillus thuringiensis ; Bacillus thuringiensis - chemistry ; Bacillus thuringiensis - metabolism ; Binding Sites ; Cry protein ; Crystallography, X-Ray ; Databases, Protein ; Drug Screening Assays, Antitumor ; Endotoxins - chemistry ; Models, Molecular ; Molecular Sequence Data ; parasporin ; pore-forming toxin ; Protein Conformation ; Protein Folding ; Serine - genetics ; Serine - metabolism ; Threonine - genetics ; Threonine - metabolism ; transmembrane β-hairpin</subject><ispartof>Journal of molecular biology, 2009-02, Vol.386 (1), p.121-133</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-8b1a8de322229e6a936760c615d6170e2bd10def66966e5fbf684d5bf09999b63</citedby><cites>FETCH-LOGICAL-c382t-8b1a8de322229e6a936760c615d6170e2bd10def66966e5fbf684d5bf09999b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022283608014903$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19094993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akiba, Toshihiko</creatorcontrib><creatorcontrib>Abe, Yuichi</creatorcontrib><creatorcontrib>Kitada, Sakae</creatorcontrib><creatorcontrib>Kusaka, Yoshitomo</creatorcontrib><creatorcontrib>Ito, Akio</creatorcontrib><creatorcontrib>Ichimatsu, Tokio</creatorcontrib><creatorcontrib>Katayama, Hideki</creatorcontrib><creatorcontrib>Akao, Tetsuyuki</creatorcontrib><creatorcontrib>Higuchi, Kazuhiko</creatorcontrib><creatorcontrib>Mizuki, Eiichi</creatorcontrib><creatorcontrib>Ohba, Michio</creatorcontrib><creatorcontrib>Kanai, Ryuta</creatorcontrib><creatorcontrib>Harata, Kazuaki</creatorcontrib><title>Crystal Structure of the Parasporin-2 Bacillus thuringiensis Toxin That Recognizes Cancer Cells</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Parasporin-2 is a protein toxin that is isolated from parasporal inclusions of the Gram-positive bacterium Bacillus thuringiensis. Although B. thuringiensis is generally known as a valuable source of insecticidal toxins, parasporin-2 is not insecticidal, but has a strong cytocidal activity in liver and colon cancer cells. The 37-kDa inactive nascent protein is proteolytically cleaved to the 30-kDa active form that loses both the N-terminal and the C-terminal segments. Accumulated cytological and biochemical observations on parasporin-2 imply that the protein is a pore-forming toxin. To confirm the hypothesis, we have determined the crystal structure of its active form at a resolution of 2.38 Å. The protein is unusually elongated and mainly comprises long β-strands aligned with its long axis. It is similar to aerolysin-type β-pore-forming toxins, which strongly reinforce the pore-forming hypothesis. The molecule can be divided into three domains. Domain 1, comprising a small β-sheet sandwiched by short α-helices, is probably the target-binding module. Two other domains are both β-sandwiches and thought to be involved in oligomerization and pore formation. Domain 2 has a putative channel-forming β-hairpin characteristic of aerolysin-type toxins. The surface of the protein has an extensive track of exposed side chains of serine and threonine residues. The track might orient the molecule on the cell membrane when domain 1 binds to the target until oligomerization and pore formation are initiated. The β-hairpin has such a tight structure that it seems unlikely to reform as postulated in a recent model of pore formation developed for aerolysin-type toxins. A safety lock model is proposed as an inactivation mechanism by the N-terminal inhibitory segment.</description><subject>Amino Acid Sequence</subject><subject>Bacillus thuringiensis</subject><subject>Bacillus thuringiensis - chemistry</subject><subject>Bacillus thuringiensis - metabolism</subject><subject>Binding Sites</subject><subject>Cry protein</subject><subject>Crystallography, X-Ray</subject><subject>Databases, Protein</subject><subject>Drug Screening Assays, Antitumor</subject><subject>Endotoxins - chemistry</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>parasporin</subject><subject>pore-forming toxin</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Serine - genetics</subject><subject>Serine - metabolism</subject><subject>Threonine - genetics</subject><subject>Threonine - metabolism</subject><subject>transmembrane β-hairpin</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFq3DAQhkVJ6W7SPkAvQafc7IwkW5bIKTFpEgi0tNuzkOVxVovX3kh2yPbpq7ALubVzGZj55mf4CPnKIGfA5OUm32ybnAOonPEcgH8gSwZKZ0oKdUKWacIzroRckNMYNwBQikJ9IgumQRdaiyUxddjHyfb01xRmN80B6djRaY30hw027sbgh4zTG-t8388xbeY0efI4RB_panz1A12t7UR_ohufBv8HI63t4DDQGvs-fiYfO9tH_HLsZ-T3t9tVfZ89fr97qK8fMycUnzLVMKtaFDyVRmm1kJUEJ1nZSlYB8qZl0GInpZYSy67ppCrasulAp2qkOCMXh9xdGJ9njJPZ-ujSB3bAcY5GSlUVFS_-C3JIwspSJJAdQBfGGAN2Zhf81oa9YWDe9JuNSfrNm37DuEmy0835MXxutti-Xxx9J-DqAGBy8eIxmOiSS4etD-gm047-H_F_Ach0lX4</recordid><startdate>20090213</startdate><enddate>20090213</enddate><creator>Akiba, Toshihiko</creator><creator>Abe, Yuichi</creator><creator>Kitada, Sakae</creator><creator>Kusaka, Yoshitomo</creator><creator>Ito, Akio</creator><creator>Ichimatsu, Tokio</creator><creator>Katayama, Hideki</creator><creator>Akao, Tetsuyuki</creator><creator>Higuchi, Kazuhiko</creator><creator>Mizuki, Eiichi</creator><creator>Ohba, Michio</creator><creator>Kanai, Ryuta</creator><creator>Harata, Kazuaki</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20090213</creationdate><title>Crystal Structure of the Parasporin-2 Bacillus thuringiensis Toxin That Recognizes Cancer Cells</title><author>Akiba, Toshihiko ; Abe, Yuichi ; Kitada, Sakae ; Kusaka, Yoshitomo ; Ito, Akio ; Ichimatsu, Tokio ; Katayama, Hideki ; Akao, Tetsuyuki ; Higuchi, Kazuhiko ; Mizuki, Eiichi ; Ohba, Michio ; Kanai, Ryuta ; Harata, Kazuaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-8b1a8de322229e6a936760c615d6170e2bd10def66966e5fbf684d5bf09999b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Bacillus thuringiensis</topic><topic>Bacillus thuringiensis - chemistry</topic><topic>Bacillus thuringiensis - metabolism</topic><topic>Binding Sites</topic><topic>Cry protein</topic><topic>Crystallography, X-Ray</topic><topic>Databases, Protein</topic><topic>Drug Screening Assays, Antitumor</topic><topic>Endotoxins - chemistry</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>parasporin</topic><topic>pore-forming toxin</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Serine - genetics</topic><topic>Serine - metabolism</topic><topic>Threonine - genetics</topic><topic>Threonine - metabolism</topic><topic>transmembrane β-hairpin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akiba, Toshihiko</creatorcontrib><creatorcontrib>Abe, Yuichi</creatorcontrib><creatorcontrib>Kitada, Sakae</creatorcontrib><creatorcontrib>Kusaka, Yoshitomo</creatorcontrib><creatorcontrib>Ito, Akio</creatorcontrib><creatorcontrib>Ichimatsu, Tokio</creatorcontrib><creatorcontrib>Katayama, Hideki</creatorcontrib><creatorcontrib>Akao, Tetsuyuki</creatorcontrib><creatorcontrib>Higuchi, Kazuhiko</creatorcontrib><creatorcontrib>Mizuki, Eiichi</creatorcontrib><creatorcontrib>Ohba, Michio</creatorcontrib><creatorcontrib>Kanai, Ryuta</creatorcontrib><creatorcontrib>Harata, Kazuaki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akiba, Toshihiko</au><au>Abe, Yuichi</au><au>Kitada, Sakae</au><au>Kusaka, Yoshitomo</au><au>Ito, Akio</au><au>Ichimatsu, Tokio</au><au>Katayama, Hideki</au><au>Akao, Tetsuyuki</au><au>Higuchi, Kazuhiko</au><au>Mizuki, Eiichi</au><au>Ohba, Michio</au><au>Kanai, Ryuta</au><au>Harata, Kazuaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Structure of the Parasporin-2 Bacillus thuringiensis Toxin That Recognizes Cancer Cells</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2009-02-13</date><risdate>2009</risdate><volume>386</volume><issue>1</issue><spage>121</spage><epage>133</epage><pages>121-133</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Parasporin-2 is a protein toxin that is isolated from parasporal inclusions of the Gram-positive bacterium Bacillus thuringiensis. Although B. thuringiensis is generally known as a valuable source of insecticidal toxins, parasporin-2 is not insecticidal, but has a strong cytocidal activity in liver and colon cancer cells. The 37-kDa inactive nascent protein is proteolytically cleaved to the 30-kDa active form that loses both the N-terminal and the C-terminal segments. Accumulated cytological and biochemical observations on parasporin-2 imply that the protein is a pore-forming toxin. To confirm the hypothesis, we have determined the crystal structure of its active form at a resolution of 2.38 Å. The protein is unusually elongated and mainly comprises long β-strands aligned with its long axis. It is similar to aerolysin-type β-pore-forming toxins, which strongly reinforce the pore-forming hypothesis. The molecule can be divided into three domains. Domain 1, comprising a small β-sheet sandwiched by short α-helices, is probably the target-binding module. Two other domains are both β-sandwiches and thought to be involved in oligomerization and pore formation. Domain 2 has a putative channel-forming β-hairpin characteristic of aerolysin-type toxins. The surface of the protein has an extensive track of exposed side chains of serine and threonine residues. The track might orient the molecule on the cell membrane when domain 1 binds to the target until oligomerization and pore formation are initiated. The β-hairpin has such a tight structure that it seems unlikely to reform as postulated in a recent model of pore formation developed for aerolysin-type toxins. A safety lock model is proposed as an inactivation mechanism by the N-terminal inhibitory segment.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19094993</pmid><doi>10.1016/j.jmb.2008.12.002</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2009-02, Vol.386 (1), p.121-133
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_66874724
source MEDLINE; Elsevier ScienceDirect Journals
subjects Amino Acid Sequence
Bacillus thuringiensis
Bacillus thuringiensis - chemistry
Bacillus thuringiensis - metabolism
Binding Sites
Cry protein
Crystallography, X-Ray
Databases, Protein
Drug Screening Assays, Antitumor
Endotoxins - chemistry
Models, Molecular
Molecular Sequence Data
parasporin
pore-forming toxin
Protein Conformation
Protein Folding
Serine - genetics
Serine - metabolism
Threonine - genetics
Threonine - metabolism
transmembrane β-hairpin
title Crystal Structure of the Parasporin-2 Bacillus thuringiensis Toxin That Recognizes Cancer Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A23%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Structure%20of%20the%20Parasporin-2%20Bacillus%20thuringiensis%20Toxin%20That%20Recognizes%20Cancer%20Cells&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Akiba,%20Toshihiko&rft.date=2009-02-13&rft.volume=386&rft.issue=1&rft.spage=121&rft.epage=133&rft.pages=121-133&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2008.12.002&rft_dat=%3Cproquest_cross%3E66874724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20283553&rft_id=info:pmid/19094993&rft_els_id=S0022283608014903&rfr_iscdi=true