ins and outs of biological zinc sites
The inner shell coordination properties of zinc proteins have led to the identification of four types of zinc binding sites: catalytic, cocatalytic, structural, and protein interface. Outer shell coordination can influence the stability of the zinc site and its function as exemplified herein by the...
Gespeichert in:
Veröffentlicht in: | Biometals 2009-02, Vol.22 (1), p.141-148 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148 |
---|---|
container_issue | 1 |
container_start_page | 141 |
container_title | Biometals |
container_volume | 22 |
creator | Auld, David S |
description | The inner shell coordination properties of zinc proteins have led to the identification of four types of zinc binding sites: catalytic, cocatalytic, structural, and protein interface. Outer shell coordination can influence the stability of the zinc site and its function as exemplified herein by the zinc sites in carbonic anhydrase, promatrix metalloproteases and alcohol dehydrogenase. Agents that disrupt these interactions, can lead to increased off rate constants for zinc. d-penicillamine is the first drug to inhibit a zinc protease by catalyzing the removal of the metal. Since it can accept the released zinc we have referred to it as a catalytic chelator. Agents that catalyze the release of the metal in the presence of a scavenger chelator will also inhibit enzyme catalysis and are referred to as enhanced dechelation inhibitors. |
doi_str_mv | 10.1007/s10534-008-9184-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66869046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895466271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-a2d100216df002fa0c0a9ffb2b07f9f095216d8e428e3a6b85a3f190be63c6633</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EoqXwA1ggDLAZrh9x7BFVvKRKDNDZchK7cpXGJU4G-PW4SiUkBpjucL9z7rkHoXMCtwSguIsEcsYxgMSKSI7JAZqSvKBYFgU7RFNQQmCQnE_QSYxrAFAFiGM0IYpwAJJP0bVvY2baOgtDH7PgstKHJqx8ZZrsy7dVFn1v4yk6cqaJ9mw_Z2j5-PA-f8aL16eX-f0CV5yyHhtap1yUiNql4QxUYJRzJS2hcMqBync7aTmVlhlRytwwRxSUVrBKCMZm6Gb03XbhY7Cx1xsfK9s0prVhiFoIKRRw8S_IBBMpQp7Aq1_gOgxdm57QUtGUlRaJISNTdSHGzjq97fzGdJ-agN4VrceidSpa74rWJGku9r5DubH1j2LfbALoCMS0ale2-zn8l-vlKHImaLPqfNTLNwqEJUcFMtl-A5o2jpo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>89202127</pqid></control><display><type>article</type><title>ins and outs of biological zinc sites</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Auld, David S</creator><creatorcontrib>Auld, David S</creatorcontrib><description>The inner shell coordination properties of zinc proteins have led to the identification of four types of zinc binding sites: catalytic, cocatalytic, structural, and protein interface. Outer shell coordination can influence the stability of the zinc site and its function as exemplified herein by the zinc sites in carbonic anhydrase, promatrix metalloproteases and alcohol dehydrogenase. Agents that disrupt these interactions, can lead to increased off rate constants for zinc. d-penicillamine is the first drug to inhibit a zinc protease by catalyzing the removal of the metal. Since it can accept the released zinc we have referred to it as a catalytic chelator. Agents that catalyze the release of the metal in the presence of a scavenger chelator will also inhibit enzyme catalysis and are referred to as enhanced dechelation inhibitors.</description><identifier>ISSN: 0966-0844</identifier><identifier>EISSN: 1572-8773</identifier><identifier>DOI: 10.1007/s10534-008-9184-1</identifier><identifier>PMID: 19140015</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>Alcohol Dehydrogenase - chemistry ; Alcohol Dehydrogenase - genetics ; Alcohol Dehydrogenase - metabolism ; Amino Acid Sequence ; Binding Sites ; Biochemistry ; Biomedical and Life Sciences ; Biophysics ; Carbonic Anhydrases - chemistry ; Carbonic Anhydrases - genetics ; Carbonic Anhydrases - metabolism ; Catalysis ; Catalysts ; Cell Biology ; Enzymes ; Humans ; Life Sciences ; Medicine/Public Health ; Metalloproteins - chemistry ; Metalloproteins - metabolism ; Microbiology ; Models, Molecular ; Molecular Sequence Data ; Pharmacology/Toxicology ; Plant Physiology ; Protein Conformation ; Protein Precursors - chemistry ; Protein Precursors - genetics ; Protein Precursors - metabolism ; Proteins ; Sequence Alignment ; Zinc ; Zinc - chemistry ; Zinc - metabolism</subject><ispartof>Biometals, 2009-02, Vol.22 (1), p.141-148</ispartof><rights>Springer Science+Business Media, LLC. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-a2d100216df002fa0c0a9ffb2b07f9f095216d8e428e3a6b85a3f190be63c6633</citedby><cites>FETCH-LOGICAL-c423t-a2d100216df002fa0c0a9ffb2b07f9f095216d8e428e3a6b85a3f190be63c6633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10534-008-9184-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10534-008-9184-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19140015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Auld, David S</creatorcontrib><title>ins and outs of biological zinc sites</title><title>Biometals</title><addtitle>Biometals</addtitle><addtitle>Biometals</addtitle><description>The inner shell coordination properties of zinc proteins have led to the identification of four types of zinc binding sites: catalytic, cocatalytic, structural, and protein interface. Outer shell coordination can influence the stability of the zinc site and its function as exemplified herein by the zinc sites in carbonic anhydrase, promatrix metalloproteases and alcohol dehydrogenase. Agents that disrupt these interactions, can lead to increased off rate constants for zinc. d-penicillamine is the first drug to inhibit a zinc protease by catalyzing the removal of the metal. Since it can accept the released zinc we have referred to it as a catalytic chelator. Agents that catalyze the release of the metal in the presence of a scavenger chelator will also inhibit enzyme catalysis and are referred to as enhanced dechelation inhibitors.</description><subject>Alcohol Dehydrogenase - chemistry</subject><subject>Alcohol Dehydrogenase - genetics</subject><subject>Alcohol Dehydrogenase - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biophysics</subject><subject>Carbonic Anhydrases - chemistry</subject><subject>Carbonic Anhydrases - genetics</subject><subject>Carbonic Anhydrases - metabolism</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Cell Biology</subject><subject>Enzymes</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Medicine/Public Health</subject><subject>Metalloproteins - chemistry</subject><subject>Metalloproteins - metabolism</subject><subject>Microbiology</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Pharmacology/Toxicology</subject><subject>Plant Physiology</subject><subject>Protein Conformation</subject><subject>Protein Precursors - chemistry</subject><subject>Protein Precursors - genetics</subject><subject>Protein Precursors - metabolism</subject><subject>Proteins</subject><subject>Sequence Alignment</subject><subject>Zinc</subject><subject>Zinc - chemistry</subject><subject>Zinc - metabolism</subject><issn>0966-0844</issn><issn>1572-8773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkDtPwzAUhS0EoqXwA1ggDLAZrh9x7BFVvKRKDNDZchK7cpXGJU4G-PW4SiUkBpjucL9z7rkHoXMCtwSguIsEcsYxgMSKSI7JAZqSvKBYFgU7RFNQQmCQnE_QSYxrAFAFiGM0IYpwAJJP0bVvY2baOgtDH7PgstKHJqx8ZZrsy7dVFn1v4yk6cqaJ9mw_Z2j5-PA-f8aL16eX-f0CV5yyHhtap1yUiNql4QxUYJRzJS2hcMqBync7aTmVlhlRytwwRxSUVrBKCMZm6Gb03XbhY7Cx1xsfK9s0prVhiFoIKRRw8S_IBBMpQp7Aq1_gOgxdm57QUtGUlRaJISNTdSHGzjq97fzGdJ-agN4VrceidSpa74rWJGku9r5DubH1j2LfbALoCMS0ale2-zn8l-vlKHImaLPqfNTLNwqEJUcFMtl-A5o2jpo</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Auld, David S</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20090201</creationdate><title>ins and outs of biological zinc sites</title><author>Auld, David S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-a2d100216df002fa0c0a9ffb2b07f9f095216d8e428e3a6b85a3f190be63c6633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Alcohol Dehydrogenase - chemistry</topic><topic>Alcohol Dehydrogenase - genetics</topic><topic>Alcohol Dehydrogenase - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biophysics</topic><topic>Carbonic Anhydrases - chemistry</topic><topic>Carbonic Anhydrases - genetics</topic><topic>Carbonic Anhydrases - metabolism</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Cell Biology</topic><topic>Enzymes</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Medicine/Public Health</topic><topic>Metalloproteins - chemistry</topic><topic>Metalloproteins - metabolism</topic><topic>Microbiology</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Pharmacology/Toxicology</topic><topic>Plant Physiology</topic><topic>Protein Conformation</topic><topic>Protein Precursors - chemistry</topic><topic>Protein Precursors - genetics</topic><topic>Protein Precursors - metabolism</topic><topic>Proteins</topic><topic>Sequence Alignment</topic><topic>Zinc</topic><topic>Zinc - chemistry</topic><topic>Zinc - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Auld, David S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biometals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Auld, David S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ins and outs of biological zinc sites</atitle><jtitle>Biometals</jtitle><stitle>Biometals</stitle><addtitle>Biometals</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>22</volume><issue>1</issue><spage>141</spage><epage>148</epage><pages>141-148</pages><issn>0966-0844</issn><eissn>1572-8773</eissn><abstract>The inner shell coordination properties of zinc proteins have led to the identification of four types of zinc binding sites: catalytic, cocatalytic, structural, and protein interface. Outer shell coordination can influence the stability of the zinc site and its function as exemplified herein by the zinc sites in carbonic anhydrase, promatrix metalloproteases and alcohol dehydrogenase. Agents that disrupt these interactions, can lead to increased off rate constants for zinc. d-penicillamine is the first drug to inhibit a zinc protease by catalyzing the removal of the metal. Since it can accept the released zinc we have referred to it as a catalytic chelator. Agents that catalyze the release of the metal in the presence of a scavenger chelator will also inhibit enzyme catalysis and are referred to as enhanced dechelation inhibitors.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><pmid>19140015</pmid><doi>10.1007/s10534-008-9184-1</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0966-0844 |
ispartof | Biometals, 2009-02, Vol.22 (1), p.141-148 |
issn | 0966-0844 1572-8773 |
language | eng |
recordid | cdi_proquest_miscellaneous_66869046 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Alcohol Dehydrogenase - chemistry Alcohol Dehydrogenase - genetics Alcohol Dehydrogenase - metabolism Amino Acid Sequence Binding Sites Biochemistry Biomedical and Life Sciences Biophysics Carbonic Anhydrases - chemistry Carbonic Anhydrases - genetics Carbonic Anhydrases - metabolism Catalysis Catalysts Cell Biology Enzymes Humans Life Sciences Medicine/Public Health Metalloproteins - chemistry Metalloproteins - metabolism Microbiology Models, Molecular Molecular Sequence Data Pharmacology/Toxicology Plant Physiology Protein Conformation Protein Precursors - chemistry Protein Precursors - genetics Protein Precursors - metabolism Proteins Sequence Alignment Zinc Zinc - chemistry Zinc - metabolism |
title | ins and outs of biological zinc sites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ins%20and%20outs%20of%20biological%20zinc%20sites&rft.jtitle=Biometals&rft.au=Auld,%20David%20S&rft.date=2009-02-01&rft.volume=22&rft.issue=1&rft.spage=141&rft.epage=148&rft.pages=141-148&rft.issn=0966-0844&rft.eissn=1572-8773&rft_id=info:doi/10.1007/s10534-008-9184-1&rft_dat=%3Cproquest_cross%3E1895466271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=89202127&rft_id=info:pmid/19140015&rfr_iscdi=true |