Multispectral analysis of multimodal images

Introduction. An increasing number of multimodal images represent a valuable increase in available image information, but at the same time it complicates the extraction of diagnostic information across the images. Multispectral analysis (MSA) has the potential to simplify this problem substantially...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta oncologica 2009-01, Vol.48 (2), p.277-284
Hauptverfasser: Kvinnsland, Yngve, Brekke, Njål, Taxt, Torfinn M., Grüner, Renate
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 284
container_issue 2
container_start_page 277
container_title Acta oncologica
container_volume 48
creator Kvinnsland, Yngve
Brekke, Njål
Taxt, Torfinn M.
Grüner, Renate
description Introduction. An increasing number of multimodal images represent a valuable increase in available image information, but at the same time it complicates the extraction of diagnostic information across the images. Multispectral analysis (MSA) has the potential to simplify this problem substantially as unlimited number of images can be combined, and tissue properties across the images can be extracted automatically. Materials and methods. We have developed a software solution for MSA containing two algorithms for unsupervised classification, an EM-algorithm finding multinormal class descriptions and the k-means clustering algorithm, and two for supervised classification, a Bayesian classifier using multinormal class descriptions and a kNN-algorithm. The software has an efficient user interface for the creation and manipulation of class descriptions, and it has proper tools for displaying the results. Results. The software has been tested on different sets of images. One application is to segment cross-sectional images of brain tissue (T1- and T2-weighted MR images) into its main normal tissues and brain tumors. Another interesting set of images are the perfusion maps and diffusion maps, derived images from raw MR images. The software returns segmentations that seem to be sensible. Discussion. The MSA software appears to be a valuable tool for image analysis with multimodal images at hand. It readily gives a segmentation of image volumes that visually seems to be sensible. However, to really learn how to use MSA, it will be necessary to gain more insight into what tissues the different segments contain, and the upcoming work will therefore be focused on examining the tissues through for example histological sections.
doi_str_mv 10.1080/02841860802290516
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66866478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20652887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-a1e5ec9b9110b3dc11411452ef8830368e1f21517d35b19b25f265c6859c150d3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWqsfwIv05EVWM7ObbBZPUvwHFS8KvYVsNrFbsk1Ndg_99qa04EFQGJhh5vcezCPkAugNUEFvKYoCBE8jYkUZ8AMyAs4gQ-TzQzLa3rMEzE_IaYxLSinmJTsmJyBKhkk2Itevg-vbuDa6D8pN1Eq5TWzjxNtJt710vknrtlOfJp6RI6tcNOf7PiYfjw_v0-ds9vb0Mr2fZbpA1mcKDDO6qisAWueNBihSMTRWiJzmXBiwCAzKJmc1VDUyi5xpLlilgdEmH5Orne86-K_BxF52bdTGObUyfoiSc8F5UYp_QaScoRBlAmEH6uBjDMbKdUg_hY0EKrdRyl9RJs3l3nyoO9P8KPbZJeBuB7Qr60OnFka5fqFVMHLph5CSjH_YfwMLiX7G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20652887</pqid></control><display><type>article</type><title>Multispectral analysis of multimodal images</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Taylor &amp; Francis Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kvinnsland, Yngve ; Brekke, Njål ; Taxt, Torfinn M. ; Grüner, Renate</creator><creatorcontrib>Kvinnsland, Yngve ; Brekke, Njål ; Taxt, Torfinn M. ; Grüner, Renate</creatorcontrib><description>Introduction. An increasing number of multimodal images represent a valuable increase in available image information, but at the same time it complicates the extraction of diagnostic information across the images. Multispectral analysis (MSA) has the potential to simplify this problem substantially as unlimited number of images can be combined, and tissue properties across the images can be extracted automatically. Materials and methods. We have developed a software solution for MSA containing two algorithms for unsupervised classification, an EM-algorithm finding multinormal class descriptions and the k-means clustering algorithm, and two for supervised classification, a Bayesian classifier using multinormal class descriptions and a kNN-algorithm. The software has an efficient user interface for the creation and manipulation of class descriptions, and it has proper tools for displaying the results. Results. The software has been tested on different sets of images. One application is to segment cross-sectional images of brain tissue (T1- and T2-weighted MR images) into its main normal tissues and brain tumors. Another interesting set of images are the perfusion maps and diffusion maps, derived images from raw MR images. The software returns segmentations that seem to be sensible. Discussion. The MSA software appears to be a valuable tool for image analysis with multimodal images at hand. It readily gives a segmentation of image volumes that visually seems to be sensible. However, to really learn how to use MSA, it will be necessary to gain more insight into what tissues the different segments contain, and the upcoming work will therefore be focused on examining the tissues through for example histological sections.</description><identifier>ISSN: 0284-186X</identifier><identifier>EISSN: 1651-226X</identifier><identifier>DOI: 10.1080/02841860802290516</identifier><identifier>PMID: 18752080</identifier><language>eng</language><publisher>England: Informa UK Ltd</publisher><subject>Algorithms ; Brain - diagnostic imaging ; Brain Neoplasms - diagnostic imaging ; Color ; Computer Simulation ; Humans ; Image Processing, Computer-Assisted - methods ; Models, Biological ; Radiography ; Sensitivity and Specificity ; Software Design ; Spectrum Analysis - methods ; Stroke - diagnostic imaging ; User-Computer Interface</subject><ispartof>Acta oncologica, 2009-01, Vol.48 (2), p.277-284</ispartof><rights>2009 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-a1e5ec9b9110b3dc11411452ef8830368e1f21517d35b19b25f265c6859c150d3</citedby><cites>FETCH-LOGICAL-c425t-a1e5ec9b9110b3dc11411452ef8830368e1f21517d35b19b25f265c6859c150d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02841860802290516$$EPDF$$P50$$Ginformahealthcare$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02841860802290516$$EHTML$$P50$$Ginformahealthcare$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,61221,61402</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18752080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kvinnsland, Yngve</creatorcontrib><creatorcontrib>Brekke, Njål</creatorcontrib><creatorcontrib>Taxt, Torfinn M.</creatorcontrib><creatorcontrib>Grüner, Renate</creatorcontrib><title>Multispectral analysis of multimodal images</title><title>Acta oncologica</title><addtitle>Acta Oncol</addtitle><description>Introduction. An increasing number of multimodal images represent a valuable increase in available image information, but at the same time it complicates the extraction of diagnostic information across the images. Multispectral analysis (MSA) has the potential to simplify this problem substantially as unlimited number of images can be combined, and tissue properties across the images can be extracted automatically. Materials and methods. We have developed a software solution for MSA containing two algorithms for unsupervised classification, an EM-algorithm finding multinormal class descriptions and the k-means clustering algorithm, and two for supervised classification, a Bayesian classifier using multinormal class descriptions and a kNN-algorithm. The software has an efficient user interface for the creation and manipulation of class descriptions, and it has proper tools for displaying the results. Results. The software has been tested on different sets of images. One application is to segment cross-sectional images of brain tissue (T1- and T2-weighted MR images) into its main normal tissues and brain tumors. Another interesting set of images are the perfusion maps and diffusion maps, derived images from raw MR images. The software returns segmentations that seem to be sensible. Discussion. The MSA software appears to be a valuable tool for image analysis with multimodal images at hand. It readily gives a segmentation of image volumes that visually seems to be sensible. However, to really learn how to use MSA, it will be necessary to gain more insight into what tissues the different segments contain, and the upcoming work will therefore be focused on examining the tissues through for example histological sections.</description><subject>Algorithms</subject><subject>Brain - diagnostic imaging</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Color</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Models, Biological</subject><subject>Radiography</subject><subject>Sensitivity and Specificity</subject><subject>Software Design</subject><subject>Spectrum Analysis - methods</subject><subject>Stroke - diagnostic imaging</subject><subject>User-Computer Interface</subject><issn>0284-186X</issn><issn>1651-226X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE9LAzEQxYMoWqsfwIv05EVWM7ObbBZPUvwHFS8KvYVsNrFbsk1Ndg_99qa04EFQGJhh5vcezCPkAugNUEFvKYoCBE8jYkUZ8AMyAs4gQ-TzQzLa3rMEzE_IaYxLSinmJTsmJyBKhkk2Itevg-vbuDa6D8pN1Eq5TWzjxNtJt710vknrtlOfJp6RI6tcNOf7PiYfjw_v0-ds9vb0Mr2fZbpA1mcKDDO6qisAWueNBihSMTRWiJzmXBiwCAzKJmc1VDUyi5xpLlilgdEmH5Orne86-K_BxF52bdTGObUyfoiSc8F5UYp_QaScoRBlAmEH6uBjDMbKdUg_hY0EKrdRyl9RJs3l3nyoO9P8KPbZJeBuB7Qr60OnFka5fqFVMHLph5CSjH_YfwMLiX7G</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Kvinnsland, Yngve</creator><creator>Brekke, Njål</creator><creator>Taxt, Torfinn M.</creator><creator>Grüner, Renate</creator><general>Informa UK Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20090101</creationdate><title>Multispectral analysis of multimodal images</title><author>Kvinnsland, Yngve ; Brekke, Njål ; Taxt, Torfinn M. ; Grüner, Renate</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-a1e5ec9b9110b3dc11411452ef8830368e1f21517d35b19b25f265c6859c150d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Brain - diagnostic imaging</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Color</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Models, Biological</topic><topic>Radiography</topic><topic>Sensitivity and Specificity</topic><topic>Software Design</topic><topic>Spectrum Analysis - methods</topic><topic>Stroke - diagnostic imaging</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kvinnsland, Yngve</creatorcontrib><creatorcontrib>Brekke, Njål</creatorcontrib><creatorcontrib>Taxt, Torfinn M.</creatorcontrib><creatorcontrib>Grüner, Renate</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta oncologica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kvinnsland, Yngve</au><au>Brekke, Njål</au><au>Taxt, Torfinn M.</au><au>Grüner, Renate</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multispectral analysis of multimodal images</atitle><jtitle>Acta oncologica</jtitle><addtitle>Acta Oncol</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>48</volume><issue>2</issue><spage>277</spage><epage>284</epage><pages>277-284</pages><issn>0284-186X</issn><eissn>1651-226X</eissn><abstract>Introduction. An increasing number of multimodal images represent a valuable increase in available image information, but at the same time it complicates the extraction of diagnostic information across the images. Multispectral analysis (MSA) has the potential to simplify this problem substantially as unlimited number of images can be combined, and tissue properties across the images can be extracted automatically. Materials and methods. We have developed a software solution for MSA containing two algorithms for unsupervised classification, an EM-algorithm finding multinormal class descriptions and the k-means clustering algorithm, and two for supervised classification, a Bayesian classifier using multinormal class descriptions and a kNN-algorithm. The software has an efficient user interface for the creation and manipulation of class descriptions, and it has proper tools for displaying the results. Results. The software has been tested on different sets of images. One application is to segment cross-sectional images of brain tissue (T1- and T2-weighted MR images) into its main normal tissues and brain tumors. Another interesting set of images are the perfusion maps and diffusion maps, derived images from raw MR images. The software returns segmentations that seem to be sensible. Discussion. The MSA software appears to be a valuable tool for image analysis with multimodal images at hand. It readily gives a segmentation of image volumes that visually seems to be sensible. However, to really learn how to use MSA, it will be necessary to gain more insight into what tissues the different segments contain, and the upcoming work will therefore be focused on examining the tissues through for example histological sections.</abstract><cop>England</cop><pub>Informa UK Ltd</pub><pmid>18752080</pmid><doi>10.1080/02841860802290516</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0284-186X
ispartof Acta oncologica, 2009-01, Vol.48 (2), p.277-284
issn 0284-186X
1651-226X
language eng
recordid cdi_proquest_miscellaneous_66866478
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Taylor & Francis Journals Complete; Alma/SFX Local Collection
subjects Algorithms
Brain - diagnostic imaging
Brain Neoplasms - diagnostic imaging
Color
Computer Simulation
Humans
Image Processing, Computer-Assisted - methods
Models, Biological
Radiography
Sensitivity and Specificity
Software Design
Spectrum Analysis - methods
Stroke - diagnostic imaging
User-Computer Interface
title Multispectral analysis of multimodal images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A08%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multispectral%20analysis%20of%20multimodal%20images&rft.jtitle=Acta%20oncologica&rft.au=Kvinnsland,%20Yngve&rft.date=2009-01-01&rft.volume=48&rft.issue=2&rft.spage=277&rft.epage=284&rft.pages=277-284&rft.issn=0284-186X&rft.eissn=1651-226X&rft_id=info:doi/10.1080/02841860802290516&rft_dat=%3Cproquest_cross%3E20652887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20652887&rft_id=info:pmid/18752080&rfr_iscdi=true