Modeling and numerical simulation of secondary settlers: A Method of Lines strategy
In this paper, attention is focused on a parabolic partial differential equation (PDE) modeling sedimentation in a secondary settler and the proper formulation of the problem boundary conditions (i.e., the conditions prevailing at the feed, clear water and sludge outlets). The presence of a diffusio...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2009-02, Vol.43 (2), p.319-330 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 330 |
---|---|
container_issue | 2 |
container_start_page | 319 |
container_title | Water research (Oxford) |
container_volume | 43 |
creator | David, R. Saucez, P. Vasel, J.-L. Vande Wouwer, A. |
description | In this paper, attention is focused on a parabolic partial differential equation (PDE) modeling sedimentation in a secondary settler and the proper formulation of the problem boundary conditions (i.e., the conditions prevailing at the feed, clear water and sludge outlets). The presence of a diffusion term in the equation not only allows the reproduction of experimental observations, as reported in a number of works, but also makes the numerical solution of the initial-boundary value problem significantly easier than the original conservation law (which is a nonlinear hyperbolic PDE problem requiring advanced numerical techniques). A Method of Lines (MOL) solution strategy is then proposed, based on the use of finite differences or spectral methods, and on readily available time integrators. The efficiency and flexibility of the general procedure are demonstrated with various numerical simulation results. |
doi_str_mv | 10.1016/j.watres.2008.10.037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66854689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135408004909</els_id><sourcerecordid>66854689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-37b70e8a3a53b0501ae44fc49985691266d615e254b0201062476979a038b2913</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EokvhHyCUC9yyjD9jc0CqKr6krTgAZ8txJsWrxCm2A-q_x9Gu4AanGY2feTV-CHlOYU-BqtfH_S9XEuY9A9B1tAfePSA7qjvTMiH0Q7IDELylXIoL8iTnIwAwxs1jckENMM2N3JEvN8uAU4i3jYtDE9cZU_BuanKY18mVsMRmGZuMfomDS_e1K2XClN80V80Nlu_LsL0fQsTc5JJcwdv7p-TR6KaMz871knx7_-7r9cf28PnDp-urQ-sFo6XlXd8Based5D1IoA6FGL0wRktlKFNqUFQik6IHBhQUE50ynXHAdc8M5Zfk1Sn3Li0_VszFziF7nCYXcVmzVUpLobT5L8iqDa0lq6A4gT4tOScc7V0Kc_23pWA36_ZoT9btZn2bVut17cU5f-1nHP4unTVX4OUZcLnaHZOLPuQ_HKNgjBFb0NsTh1Xbz4DJZh8wehxCQl_ssIR_X_Iba_egTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20288852</pqid></control><display><type>article</type><title>Modeling and numerical simulation of secondary settlers: A Method of Lines strategy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>David, R. ; Saucez, P. ; Vasel, J.-L. ; Vande Wouwer, A.</creator><creatorcontrib>David, R. ; Saucez, P. ; Vasel, J.-L. ; Vande Wouwer, A.</creatorcontrib><description>In this paper, attention is focused on a parabolic partial differential equation (PDE) modeling sedimentation in a secondary settler and the proper formulation of the problem boundary conditions (i.e., the conditions prevailing at the feed, clear water and sludge outlets). The presence of a diffusion term in the equation not only allows the reproduction of experimental observations, as reported in a number of works, but also makes the numerical solution of the initial-boundary value problem significantly easier than the original conservation law (which is a nonlinear hyperbolic PDE problem requiring advanced numerical techniques). A Method of Lines (MOL) solution strategy is then proposed, based on the use of finite differences or spectral methods, and on readily available time integrators. The efficiency and flexibility of the general procedure are demonstrated with various numerical simulation results.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2008.10.037</identifier><identifier>PMID: 19028395</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Exact sciences and technology ; Geologic Sediments ; Mathematical modeling ; Method of Lines ; Models, Theoretical ; Numerical simulation ; Other industrial wastes. Sewage sludge ; Partial differential equations ; Pollution ; Secondary settlers ; Wastes ; Wastewater treatment ; Water Purification - methods ; Water treatment and pollution</subject><ispartof>Water research (Oxford), 2009-02, Vol.43 (2), p.319-330</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-37b70e8a3a53b0501ae44fc49985691266d615e254b0201062476979a038b2913</citedby><cites>FETCH-LOGICAL-c421t-37b70e8a3a53b0501ae44fc49985691266d615e254b0201062476979a038b2913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0043135408004909$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21099947$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19028395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>David, R.</creatorcontrib><creatorcontrib>Saucez, P.</creatorcontrib><creatorcontrib>Vasel, J.-L.</creatorcontrib><creatorcontrib>Vande Wouwer, A.</creatorcontrib><title>Modeling and numerical simulation of secondary settlers: A Method of Lines strategy</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>In this paper, attention is focused on a parabolic partial differential equation (PDE) modeling sedimentation in a secondary settler and the proper formulation of the problem boundary conditions (i.e., the conditions prevailing at the feed, clear water and sludge outlets). The presence of a diffusion term in the equation not only allows the reproduction of experimental observations, as reported in a number of works, but also makes the numerical solution of the initial-boundary value problem significantly easier than the original conservation law (which is a nonlinear hyperbolic PDE problem requiring advanced numerical techniques). A Method of Lines (MOL) solution strategy is then proposed, based on the use of finite differences or spectral methods, and on readily available time integrators. The efficiency and flexibility of the general procedure are demonstrated with various numerical simulation results.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Geologic Sediments</subject><subject>Mathematical modeling</subject><subject>Method of Lines</subject><subject>Models, Theoretical</subject><subject>Numerical simulation</subject><subject>Other industrial wastes. Sewage sludge</subject><subject>Partial differential equations</subject><subject>Pollution</subject><subject>Secondary settlers</subject><subject>Wastes</subject><subject>Wastewater treatment</subject><subject>Water Purification - methods</subject><subject>Water treatment and pollution</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQhi0EokvhHyCUC9yyjD9jc0CqKr6krTgAZ8txJsWrxCm2A-q_x9Gu4AanGY2feTV-CHlOYU-BqtfH_S9XEuY9A9B1tAfePSA7qjvTMiH0Q7IDELylXIoL8iTnIwAwxs1jckENMM2N3JEvN8uAU4i3jYtDE9cZU_BuanKY18mVsMRmGZuMfomDS_e1K2XClN80V80Nlu_LsL0fQsTc5JJcwdv7p-TR6KaMz871knx7_-7r9cf28PnDp-urQ-sFo6XlXd8Based5D1IoA6FGL0wRktlKFNqUFQik6IHBhQUE50ynXHAdc8M5Zfk1Sn3Li0_VszFziF7nCYXcVmzVUpLobT5L8iqDa0lq6A4gT4tOScc7V0Kc_23pWA36_ZoT9btZn2bVut17cU5f-1nHP4unTVX4OUZcLnaHZOLPuQ_HKNgjBFb0NsTh1Xbz4DJZh8wehxCQl_ssIR_X_Iba_egTw</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>David, R.</creator><creator>Saucez, P.</creator><creator>Vasel, J.-L.</creator><creator>Vande Wouwer, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>20090201</creationdate><title>Modeling and numerical simulation of secondary settlers: A Method of Lines strategy</title><author>David, R. ; Saucez, P. ; Vasel, J.-L. ; Vande Wouwer, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-37b70e8a3a53b0501ae44fc49985691266d615e254b0201062476979a038b2913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Geologic Sediments</topic><topic>Mathematical modeling</topic><topic>Method of Lines</topic><topic>Models, Theoretical</topic><topic>Numerical simulation</topic><topic>Other industrial wastes. Sewage sludge</topic><topic>Partial differential equations</topic><topic>Pollution</topic><topic>Secondary settlers</topic><topic>Wastes</topic><topic>Wastewater treatment</topic><topic>Water Purification - methods</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>David, R.</creatorcontrib><creatorcontrib>Saucez, P.</creatorcontrib><creatorcontrib>Vasel, J.-L.</creatorcontrib><creatorcontrib>Vande Wouwer, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>David, R.</au><au>Saucez, P.</au><au>Vasel, J.-L.</au><au>Vande Wouwer, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and numerical simulation of secondary settlers: A Method of Lines strategy</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>43</volume><issue>2</issue><spage>319</spage><epage>330</epage><pages>319-330</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>In this paper, attention is focused on a parabolic partial differential equation (PDE) modeling sedimentation in a secondary settler and the proper formulation of the problem boundary conditions (i.e., the conditions prevailing at the feed, clear water and sludge outlets). The presence of a diffusion term in the equation not only allows the reproduction of experimental observations, as reported in a number of works, but also makes the numerical solution of the initial-boundary value problem significantly easier than the original conservation law (which is a nonlinear hyperbolic PDE problem requiring advanced numerical techniques). A Method of Lines (MOL) solution strategy is then proposed, based on the use of finite differences or spectral methods, and on readily available time integrators. The efficiency and flexibility of the general procedure are demonstrated with various numerical simulation results.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>19028395</pmid><doi>10.1016/j.watres.2008.10.037</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1354 |
ispartof | Water research (Oxford), 2009-02, Vol.43 (2), p.319-330 |
issn | 0043-1354 1879-2448 |
language | eng |
recordid | cdi_proquest_miscellaneous_66854689 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Applied sciences Exact sciences and technology Geologic Sediments Mathematical modeling Method of Lines Models, Theoretical Numerical simulation Other industrial wastes. Sewage sludge Partial differential equations Pollution Secondary settlers Wastes Wastewater treatment Water Purification - methods Water treatment and pollution |
title | Modeling and numerical simulation of secondary settlers: A Method of Lines strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A47%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20numerical%20simulation%20of%20secondary%20settlers:%20A%20Method%20of%20Lines%20strategy&rft.jtitle=Water%20research%20(Oxford)&rft.au=David,%20R.&rft.date=2009-02-01&rft.volume=43&rft.issue=2&rft.spage=319&rft.epage=330&rft.pages=319-330&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2008.10.037&rft_dat=%3Cproquest_cross%3E66854689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20288852&rft_id=info:pmid/19028395&rft_els_id=S0043135408004909&rfr_iscdi=true |